-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_contrast_voxel_vae.py
87 lines (64 loc) · 3.19 KB
/
train_contrast_voxel_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from torch.utils.data import DataLoader
from ahoi_utils import *
from models_cvae import CVAE
from tqdm import tqdm
from dataloaders import AhoiDataset
if __name__ == '__main__':
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Hyper-parameters
hidden_dim = 16
out_conv_channels = 512
num_epochs = 100
batch_size = 12
n_grid = 64
learning_rate = 0.0001
train_dataset = AhoiDataset(data_folder=DATA_FOLDER, n_grid=n_grid, add_human=False, add_contrast=True)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=6)
model = CVAE(dim=n_grid, out_conv_channels=out_conv_channels, hidden_dim=hidden_dim).to(device)
# Loss and optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, )
scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, 500, 2)
# Train the model
total_step = len(train_loader)
# Start training
step_id = 0
for epoch in range(num_epochs):
for i, (output, idx) in enumerate(tqdm(train_loader)):
x = output['occ']
x_fake = output['occ_fake']
model.train()
# Forward pass
x = x.to(device)
x_fake = x_fake.to(device)
x_rec, mu, log_var, z = model(x)
z_fake, _ = model.encoder(x_fake)
# Compute reconstruction loss and kl divergence
# For KL divergence, see Appendix B in VAE paper
reconst_loss = F.binary_cross_entropy(x_rec, x, size_average=False, weight=1 + 10 / (1 + 0.01 * step_id) * x)
kl_div = - 0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())
contra_loss = torch.sum(torch.square(z) - torch.square(z_fake), dim=1)
contra_loss[contra_loss < 0] = 0
contra_loss = torch.sum(contra_loss)
if (i + 1) % 100 == 0:
model.eval()
with torch.no_grad():
x_bin_rec = x_rec.clone()
x_bin_rec[x_bin_rec >= 0.5] = 1.
x_bin_rec[x_bin_rec < 0.5] = 0.
x_bin_rec = x_bin_rec.to(torch.bool)
x_bin = x.clone().to(torch.bool)
precision = torch.count_nonzero(x_bin[x_bin_rec]) / torch.count_nonzero(x_bin)
recall = torch.count_nonzero(x_bin_rec[x_bin]) / torch.count_nonzero(x_bin_rec)
lr = optimizer.param_groups[0]['lr']
print("Epoch[{}/{}], Step [{}/{}], Reconst Loss: {:.4f}, KL Div: {:.4f}, Contra Loss: {:.4f} precision: {:.4f}, recall: {:4f}, lr: {:f}"
.format(epoch + 1, num_epochs, i + 1, len(train_loader), reconst_loss.item(), kl_div.item(), contra_loss.item(),
precision.item(), recall.item(), lr))
# Backprop and optimize
model.train()
loss = reconst_loss + 100. * kl_div + 100. * contra_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
step_id += 1