-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_mnist.py
398 lines (327 loc) · 15 KB
/
eval_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import sys, os, json, six, cv2
import numpy as np
import itertools
import keras.backend as K
from keras.layers import Dense, Dropout, Activation, BatchNormalization
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import load_model, Sequential
from keras.metrics import categorical_accuracy
from binary_layers import BinaryDense, Clip, DropoutNoScaleForBinary, DropoutNoScale, BinaryConv2D
from binary_ops import binary_tanh as binary_tanh_op
from ternary_layers import TernaryDense, DropoutNoScaleForTernary
from ternary_ops import ternarize
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.image as image
import matplotlib.colors as colors
from matplotlib.patches import FancyBboxPatch
from sklearn.metrics import confusion_matrix, roc_curve, auc, accuracy_score
import pandas as pd
from optparse import OptionParser
from constraints import ZeroSomeWeights
from mnist_mlp import parse_config,get_features
from models import relu1
matplotlib.rcParams.update({'font.size': 16})
def model_up_to(model, n):
m = Sequential()
for layer in model.layers[:n]:
m.add(layer)
return m
def plot_layer_output(model):
inp = model.input # input placeholder
outputs = [layer.output for layer in model.layers] # all layer outputs
functors = [K.function([inp, K.learning_phase()], [out]) for out in outputs] # evaluation function
# Testing
print(inp.shape)
test = np.random.random(784)
layer_outs = [func([test]) for func in functors]
print(layer_outs)
def add_logo(ax, fig, zoom, position='upper left', offsetx=10, offsety=10, figunits=False):
#resize image and save to new file
img = cv2.imread('logo.jpg', cv2.IMREAD_UNCHANGED)
im_w = int(img.shape[1] * zoom )
im_h = int(img.shape[0] * zoom )
dim = (im_w, im_h)
resized = cv2.resize(img, dim, interpolation = cv2.INTER_AREA)
cv2.imwrite( "logo_resized.jpg", resized );
#read resized image
im = image.imread('logo_resized.jpg')
im_w = im.shape[1]
im_h = im.shape[0]
#get coordinates of corners in data units and compute an offset in pixel units depending on chosen position
ax_xmin,ax_ymax = 0,0
offsetX = 0
offsetY = 0
if position=='upper left':
ax_xmin,ax_ymax = ax.get_xlim()[0],ax.get_ylim()[1]
offsetX,offsetY = offsetx,-im_h-offsety
elif position=='out left':
ax_xmin,ax_ymax = ax.get_xlim()[0],ax.get_ylim()[1]
offsetX,offsetY = offsetx,offsety
elif position=='upper right':
ax_xmin,ax_ymax = ax.get_xlim()[1],ax.get_ylim()[1]
offsetX,offsetY = -im_w-offsetx,-im_h-offsety
elif position=='out right':
ax_xmin,ax_ymax = ax.get_xlim()[1],ax.get_ylim()[1]
offsetX,offsetY = -im_w-offsetx,offsety
elif position=='bottom left':
ax_xmin,ax_ymax = ax.get_xlim()[0],ax.get_ylim()[0]
offsetX,offsetY=offsetx,offsety
elif position=='bottom right':
ax_xmin,ax_ymax = ax.get_xlim()[1],ax.get_ylim()[0]
offsetX,offsetY=-im_w-offsetx,offsety
#transform axis limits in pixel units
ax_xmin,ax_ymax = ax.transData.transform((ax_xmin,ax_ymax))
#compute figure x,y of bottom left corner by adding offset to axis limits (pixel units)
f_xmin,f_ymin = ax_xmin+offsetX,ax_ymax+offsetY
#add image to the plot
plt.figimage(im,f_xmin,f_ymin)
#compute box x,y of bottom left corner (= figure x,y) in axis/figure units
if figunits:
b_xmin,b_ymin = fig.transFigure.inverted().transform((f_xmin,f_ymin))
#print("figunits",b_xmin,b_ymin)
else: b_xmin,b_ymin = ax.transAxes.inverted().transform((f_xmin,f_ymin))
#compute figure width/height in axis/figure units
if figunits: f_xmax,f_ymax = fig.transFigure.inverted().transform((f_xmin+im_w,f_ymin+im_h)) #transform to figure units the figure limits
else: f_xmax,f_ymax = ax.transAxes.inverted().transform((f_xmin+im_w,f_ymin+im_h)) #transform to axis units the figure limits
b_w = f_xmax-b_xmin
b_h = f_ymax-b_ymin
#set which units will be used for the box
transformation = ax.transAxes
if figunits: transformation=fig.transFigure
rectangle = FancyBboxPatch((b_xmin,b_ymin),
b_w, b_h,
transform=transformation,
boxstyle='round,pad=0.004,rounding_size=0.01',
facecolor='w',
edgecolor='0.8',linewidth=0.8,clip_on=False)
ax.add_patch(rectangle)
def _byteify(data, ignore_dicts = False):
# if this is a unicode string, return its string representation
if isinstance(data, six.text_type):
return data.encode('utf-8')
# if this is a list of values, return list of byteified values
if isinstance(data, list):
return [ _byteify(item, ignore_dicts=True) for item in data ]
# if this is a dictionary, return dictionary of byteified keys and values
# but only if we haven't already byteified it
if isinstance(data, dict) and not ignore_dicts:
return {
_byteify(key, ignore_dicts=True): _byteify(value, ignore_dicts=True)
for key, value in data.items()
}
# if it's anything else, return it in its original form
return data
def makeRoc(features_val, labels, labels_val, model, outputDir, predict_hls = [], suffix=''):
if len(predict_hls) == 0: predict_test = model.predict(features_val)
else: predict_test = predict_hls
df = pd.DataFrame()
fpr = {}
tpr = {}
auc1 = {}
fig,ax = plt.subplots()
for i, label in enumerate(labels):
df[label] = labels_val[:,i]
df[label + '_pred'] = predict_test[:,i]
fpr[label], tpr[label], threshold = roc_curve(df[label],df[label+'_pred'])
auc1[label] = auc(fpr[label], tpr[label])
plt.plot(tpr[label],fpr[label],label='%s (%.4f)'%(label,auc1[label]))
plt.semilogy()
plt.xlabel("True positive rate")
plt.ylabel("False positive rate")
plt.ylim(0.001,1)
plt.xlim(0.9,1)
plt.grid(color='0.8', linestyle='dotted')
plt.legend(loc='upper left',fontsize=15)
plt.grid(color='0.8', linestyle='dotted')
fig.tight_layout()
plt.figtext(0.925, 0.94,options.label, wrap=True, horizontalalignment='right')
add_logo(ax, fig, 0.14, position='upper right')
plt.savefig('%s/ROC%s.png'%(outputDir,suffix))
plt.savefig('%s/ROC%s.pdf'%(outputDir,suffix))
return predict_test
def accuracy_per_class(cm):
accs = np.zeros(10)
accs_tot = 0
for j in range(cm.shape[0] ):
TP = 0.
TN = 0.
for i in range( cm.shape[0] ):
if i != j:
for k in range( cm.shape[0] ):
if k!=j:
TN+=cm[k][i]
else:TP+=cm[j][i]
print("----> Accuracy:",j,(TP+TN)/cm.sum(),"%.1f"%((TP+TN)/cm.sum()*100.))
accs[j] = (TP+TN)/cm.sum()
accs_tot+=(TP+TN)
print("Min acc:",np.amin(accs),"Max acc:",np.amax(accs))
def per_class_accuracy(y_preds,y_true,class_labels):
return [np.mean([(y_true[pred_idx] == np.round(y_pred)) for pred_idx, y_pred in enumerate(y_preds) if y_true[pred_idx] == int(class_label)]) for class_label in class_labels]
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
acc = 0
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
for i in range(10):
#print("From norm cfm --> Class:",i,"Acc: %.4f"%cm[i][i])
acc+=cm[i][i]
#print("Accuracy=%.4f"%(acc/10.))
if normalize: plt.imshow(cm, cmap=cmap, norm=colors.LogNorm(vmin=0.0001, vmax=1.0)) #I had to hack /Users/jngadiub/anaconda3/lib/python3.6/site-packages/matplotlib/colors.py
else: plt.imshow(cm, interpolation='nearest', cmap=cmap)
#plt.title(title)
cbar = plt.colorbar()
plt.clim(0,1)
cbar.set_label(title)
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
#plt.text(j, i, format(cm[i, j], fmt),horizontalalignment="center", color="white" if cm[i, j] > thresh else "black")
txt = format(cm[i, j], fmt)
if normalize and txt=='0.00': txt = ""
if normalize and txt!='0.00': txt = txt.replace('0.','.')
plt.text(j, i, txt, horizontalalignment="center", verticalalignment="center", color="white" if cm[i, j] > thresh else "black", fontsize='13')
plt.ylabel('True label')
plt.xlabel('Predicted label')
def binary_tanh(x):
return binary_tanh_op(x)
def ternary_tanh(x):
x = K.clip(x, -1, 1)
return ternarize(x)
parser = OptionParser()
parser.add_option('-c','--config' ,action='store',type='string',dest='config' ,default='mnist.yml', help='yaml config file')
parser.add_option('-l','--label',action='store',type='string',dest='label',default='Binary MNIST-128',help='label for plots')
parser.add_option('-C','--convert',action='store_true',dest='convert',default=False, help='convert data to txt')
parser.add_option('--checkHLS','--checkHLS',action='store',type='string',dest='checkHLS',default='', help='file with HLS output')
(options,args) = parser.parse_args()
yamlConfig = parse_config(options.config)
outdir = yamlConfig['OutputDir']
model_file = outdir+'/KERAS_check_best_model.h5'
model = load_model(model_file, custom_objects={
'relu1': relu1,
'ZeroSomeWeights' : ZeroSomeWeights,
'DropoutNoScale':DropoutNoScale,
'DropoutNoScaleForBinary':DropoutNoScaleForBinary,
'DropoutNoScaleForTernary':DropoutNoScaleForTernary,
'Clip': Clip,
'BinaryDense': BinaryDense,
'TernaryDense': TernaryDense,
'BinaryConv2D': BinaryConv2D,
'binary_tanh': binary_tanh,
'ternary_tanh': ternary_tanh,
'Clip': Clip})
model.summary()
nb_classes = 10
X_train, X_test, Y_train, Y_test = get_features(yamlConfig,nb_classes)
score = model.evaluate(X_test, Y_test, verbose=0)
print('Keras test score:', score[0])
print('Keras test accuracy:', score[1])
labels = ['0','1','2','3','4','5','6','7','8','9']
Y_predict = makeRoc(X_test, labels, Y_test, model, outdir)
if options.convert:
outfile_name = model_file.replace('.h5','_truth_labels.dat')
print("Writing",Y_test.shape[1],"predicted labels for",Y_test.shape[0],"events in outfile",outfile_name)
outfile = open(outfile_name,'w')
for e in range(Y_test.shape[0]):
line=''
for l in range(Y_test.shape[1]): line+=(str(Y_test[e][l])+' ')
outfile.write(line+'\n')
outfile.close()
outfile_name = model_file.replace('.h5','_input_features.dat')
print("Writing",X_test.shape[1],"input features for",X_test.shape[0],"events in outfile",outfile_name)
outfile = open(outfile_name,'w')
for e in range(X_test.shape[0]):
line=''
for w in range(X_test.shape[1]):
if 'cnn' in yamlConfig['KerasModel']:
for h in range(X_test.shape[2]):
for c in range(X_test.shape[3]): line+=(str(X_test[e][w][h][c])+' ')
else: line+=(str(X_test[e][w])+' ')
outfile.write(line+'\n')
outfile.close()
outfile_name = model_file.replace('.h5','_predictions.dat')
print("Writing",Y_predict.shape[1],"predictions for",Y_predict.shape[0],"events in outfile",outfile_name)
outfile = open(outfile_name,'w')
for e in range(Y_predict.shape[0]):
line=''
for l in range(Y_predict.shape[1]): line+=(str(Y_predict[e][l])+' ')
outfile.write(line+'\n')
outfile.close()
y_test_proba = Y_test.argmax(axis=1)
y_predict_proba = Y_predict.argmax(axis=1)
cnf_matrix = confusion_matrix(y_test_proba, y_predict_proba)
print("ACCURACY PER CLASS")
accuracy_per_class(cnf_matrix)
np.set_printoptions(precision=2)
labels = ['0','1','2','3','4','5','6','7','8','9']
fig,ax = plt.subplots()
plot_confusion_matrix(cnf_matrix, classes=[l for l in labels],title='Confusion matrix')
fig.tight_layout()
plt.figtext(0.75, 0.9,options.label, wrap=True, horizontalalignment='right')
add_logo(ax, fig, 0.14, position='out left', offsetx=28, offsety=8, figunits=True)
plt.savefig(outdir+"/confusion_matrix.png")
plt.savefig(outdir+"/confusion_matrix.pdf")
fig,ax = plt.subplots()
plot_confusion_matrix(cnf_matrix, classes=[l for l in labels], normalize=True,title='Normalized confusion matrix')
plt.subplots_adjust(left=0, bottom=0.13)
plt.figtext(0.72, 0.9,options.label, wrap=True, horizontalalignment='right')
add_logo(ax, fig, 0.14, position='out left', offsetx=102, offsety=8, figunits=True)
plt.savefig(outdir+"/confusion_matrix_norm.png")
plt.savefig(outdir+"/confusion_matrix_norm.pdf")
if options.checkHLS != '':
Y_hls = np.loadtxt(options.checkHLS)
labels = ['zero','one','two','three','four','five','six','seven','eight','nine']
makeRoc(X_test, labels, Y_test, model, outdir, Y_hls,'_hls')
y_predict_proba = Y_hls.argmax(axis=1)
print('HLS test accuracty (scikit-learn):',accuracy_score(y_test_proba, y_predict_proba))
cnf_matrix = confusion_matrix(y_test_proba, y_predict_proba)
np.set_printoptions(precision=2)
accuracy_per_class(cnf_matrix)
labels = ['0','1','2','3','4','5','6','7','8','9']
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=[l for l in labels],title='Confusion matrix')
plt.figtext(0.28, 0.90,'hls4ml',fontweight='bold', wrap=True, horizontalalignment='right', fontsize=14)
plt.figtext(0.75, 0.9,options.label, wrap=True, horizontalalignment='right', fontsize=12)
plt.savefig(outdir+"/confusion_matrix_hls.png")
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=[l for l in labels], normalize=True,title='Normalized confusion matrix')
plt.figtext(0.28, 0.90,'hls4ml',fontweight='bold', wrap=True, horizontalalignment='right', fontsize=14)
plt.figtext(0.75, 0.9,options.label, wrap=True, horizontalalignment='right', fontsize=12)
plt.savefig(outdir+"/confusion_matrix_norm_hls.png")
if os.path.isfile(outdir+'/full_info.log'):
f = open(outdir+'/full_info.log')
myListOfDicts = json.load(f, object_hook=_byteify)
myDictOfLists = {}
for key, val in myListOfDicts[0].items():
myDictOfLists[key] = []
for i, myDict in enumerate(myListOfDicts):
for key, val in myDict.items():
myDictOfLists[key].append(myDict[key])
plt.figure()
val_loss = np.asarray(myDictOfLists[b'val_loss'])
loss = np.asarray(myDictOfLists[b'loss'])
plt.plot(val_loss, label='validation')
plt.plot(loss, label='train')
plt.legend()
plt.xlabel('epoch')
plt.ylabel('loss')
plt.savefig(outdir+"/loss.png")
plt.figure()
val_acc = np.asarray(myDictOfLists[b'val_acc'])
acc = np.asarray(myDictOfLists[b'acc'])
plt.plot(val_acc, label='validation')
plt.plot(acc, label='train')
plt.legend()
plt.xlabel('epoch')
plt.ylabel('accuracy')
plt.savefig(outdir+"/acc.png")