-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBlurImage.cu
199 lines (163 loc) · 7.37 KB
/
BlurImage.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
#include <opencv2/opencv.hpp>
#include <opencv2/core.hpp>
#include <opencv2/videoio.hpp>
#include <opencv2/highgui.hpp>
#include <iostream>
#include <stdio.h>
#include <bits/stdc++.h>
#include <cuda_runtime.h>
using namespace cv;
using namespace std;
#define SHARED_SIZE 125
//*(arr+3*i*1280+3*j+2)
__global__ void blur(uchar *frame,int x, int y, int height, int width, int kernelSize, int totalRows, int totalCols){
__shared__ uchar temp[SHARED_SIZE*SHARED_SIZE*3];
int initial_row = y-kernelSize/2;
for(int col = x-kernelSize/2;col<=x+width+kernelSize/2;col++){
temp[threadIdx.x*SHARED_SIZE*3+(col-(x-kernelSize/2))*3] = frame[(initial_row+threadIdx.x)*3*totalCols+col*3];
temp[threadIdx.x*SHARED_SIZE*3+(col-(x-kernelSize/2))*3+1] = frame[(initial_row+threadIdx.x)*3*totalCols+col*3+1];
temp[threadIdx.x*SHARED_SIZE*3+(col-(x-kernelSize/2))*3+2] = frame[(initial_row+threadIdx.x)*3*totalCols+col*3+2];
}
__syncthreads();
uchar acumR = 0, acumG = 0, acumB = 0;
for(int col = 0;col<=width+kernelSize-1;col++){
if(col>=kernelSize){
temp[threadIdx.x*SHARED_SIZE*3 + (col-kernelSize/2)*3] = acumR;
temp[threadIdx.x*SHARED_SIZE*3 + (col-kernelSize/2)*3+1] = acumG;
temp[threadIdx.x*SHARED_SIZE*3 + (col-kernelSize/2)*3+2] = acumB;
acumR -= temp[threadIdx.x*SHARED_SIZE*3 + (col-kernelSize)*3]/kernelSize;
acumG -= temp[threadIdx.x*SHARED_SIZE*3 + (col-kernelSize)*3+1]/kernelSize;
acumB -= temp[threadIdx.x*SHARED_SIZE*3 + (col-kernelSize)*3+2]/kernelSize;
}
acumR += temp[threadIdx.x*SHARED_SIZE*3+col*3]/kernelSize;
acumG += temp[threadIdx.x*SHARED_SIZE*3+col*3+1]/kernelSize;
acumB += temp[threadIdx.x*SHARED_SIZE*3+col*3+2]/kernelSize;
}
__syncthreads();
acumR = 0, acumG = 0, acumB = 0;
for(int row = 0;row<=height+kernelSize-1;row++){
if(row>=kernelSize){
temp[(row-kernelSize/2)*SHARED_SIZE*3 + threadIdx.x*3] = acumR;
temp[(row-kernelSize/2)*SHARED_SIZE*3 + threadIdx.x*3+1] = acumG;
temp[(row-kernelSize/2)*SHARED_SIZE*3 + threadIdx.x*3+2] = acumB;
acumR -= temp[(row-kernelSize)*SHARED_SIZE*3 + threadIdx.x*3]/kernelSize;
acumG -= temp[(row-kernelSize)*SHARED_SIZE*3 + threadIdx.x*3+1]/kernelSize;
acumB -= temp[(row-kernelSize)*SHARED_SIZE*3 + threadIdx.x*3+2]/kernelSize;
}
acumR += temp[row*SHARED_SIZE*3+threadIdx.x*3]/kernelSize;
acumG += temp[row*SHARED_SIZE*3+threadIdx.x*3+1]/kernelSize;
acumB += temp[row*SHARED_SIZE*3+threadIdx.x*3+2]/kernelSize;
}
__syncthreads();
for(int col = x-kernelSize/2;col<=x+width+kernelSize/2;col++){
frame[(initial_row+threadIdx.x)*3*totalCols+col*3] = temp[threadIdx.x*SHARED_SIZE*3+(col-(x-kernelSize/2))*3] ;
frame[(initial_row+threadIdx.x)*3*totalCols+col*3+1] = temp[threadIdx.x*SHARED_SIZE*3+(col-(x-kernelSize/2))*3+1] ;
frame[(initial_row+threadIdx.x)*3*totalCols+col*3+2] = temp[threadIdx.x*SHARED_SIZE*3+(col-(x-kernelSize/2))*3+2] ;
}
}
int main(int argc, char *argv[]){
// Se definen los directorios en donde se lee y se escribe
char path[100] = "";
char path2[100] = "";
strcat(path,argv[1]);
strcat(path2,argv[2]);
// Almacena parámetros del video de entrada
VideoCapture cap(path);
int frame_width = (int)(cap.get(3));
int frame_height = (int)(cap.get(4));
Size frame_size(frame_width, frame_height);
int fps = 20;
int totalFrames = (int)cap.get(7);
// Establece parámetros del video de salida
VideoWriter output(path2, VideoWriter::fourcc('M', 'P', '4', 'V'),fps, frame_size);
cout<<"Total frames "<<totalFrames<<endl;
cout<<"Frame width "<<frame_width<<endl;
cout<<"Frame height "<<frame_height<<endl;
// Verifica si se abrió el video con éxito
if(!cap.isOpened()){
cout << "Error opening video stream or file" << endl;
return -1;
}
// Verifica si se abrió el video con éxito
int kernelSize = 15;
double div = (double)1/(kernelSize*kernelSize);
// Variable para almacenar coordenadas y medidas de rostros
vector<Rect> faces;
CascadeClassifier face_cascade;
face_cascade.load("/content/build/blur/haarcascade_frontalface_alt.xml");
cudaError_t err = cudaSuccess;
// Se itera por todos los frames del video
int cont = 0;
int blocks_num = 1;
while(cap.isOpened()){
// Establece fotograma a analizar
Mat frame;
bool isSuccess = cap.read(frame);
// Verifica si el frame se leyó con éxito
if (!isSuccess){
cout << "Stream disconnected" << endl;
break;
}
if (frame.empty())break;
// Detecta los rostros en el fotograma
face_cascade.detectMultiScale(frame, faces, 1.1, 3,0);
// Itera sobre todos los rostros detectados
if(faces.empty()){
output.write(frame);
continue;
}
uchar *h_frame, *d_frame;
int size,threads_num = 0;
h_frame = frame.isContinuous()? frame.data: frame.clone().data;
uint length = frame.total()*frame.channels();
size = sizeof(uchar)*length;
err = cudaMalloc((void **)&d_frame, size);
if (err != cudaSuccess){
fprintf(stderr, "Failed to allocate device vector C (error code %s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
err = cudaMemcpy(d_frame, h_frame, size, cudaMemcpyHostToDevice);
if (err != cudaSuccess){
fprintf(stderr, "Failed to copy vector h_frame from device to host (error code %s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
//cout<<faces.size()<<endl;
for(Rect r:faces){
if(r.height+kernelSize>=SHARED_SIZE || r.width+kernelSize>=SHARED_SIZE)continue;
//cout<<r.height<<" "<<r.width<<endl;
threads_num = r.height+kernelSize-1;
blur<<<blocks_num,threads_num>>>(d_frame,r.x,r.y,r.height,r.width,kernelSize,frame_height,frame_width);
}
cudaDeviceSynchronize();
err = cudaGetLastError();
if (err != cudaSuccess){
fprintf(stderr, "Failed to launch vectorAdd kernel (error code %s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
err = cudaMemcpy(h_frame, d_frame, size, cudaMemcpyDeviceToHost);
if (err != cudaSuccess){
fprintf(stderr, "Failed to copy vector C from device to host (error code %s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
err = cudaFree(d_frame);
if (err != cudaSuccess){
fprintf(stderr, "Failed to free device vector C (error code %s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
// Limpia el vector de rostros
faces.clear();
output.write(frame);
// Muestra porcentaje de avance
//cout<<(double)cont*100/totalFrames<<"%"<<endl;
cont++;
}
err = cudaDeviceReset();
if (err != cudaSuccess){
fprintf(stderr, "Failed to deinitialize the device! error=%s\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
// Finaliza el programa
cap.release();
destroyAllWindows();
return 0;
}