-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdatacol_b.py
136 lines (111 loc) · 4.42 KB
/
datacol_b.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import csv
import json
import random
import threading
import time
from itertools import groupby
from operator import itemgetter
import matplotlib
import numpy as np
import pandas as pd
import requests
from sklearn import metrics
from sklearn.cluster import KMeans
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler
somevar = [0, 0]
# training algorithm
ddos = pd.read_csv("trainingset.csv")
x = ddos.drop("Column5", axis=1)
y = ddos["Column5"]
sc = StandardScaler()
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0, random_state=0)
x_train = sc.fit_transform(x_train)
def kmeans():
kmeans = KMeans(n_clusters=2) # creating 2 clusters for ddos/notddos
KMmodel = kmeans.fit(x) # initial kmean training
y = KMmodel.labels_
print(KMmodel.labels_) # printing labels
# printing values of centers of both clusters
print(KMmodel.cluster_centers_)
def Randomforest(x1):
rfc = RandomForestClassifier(n_estimators=200) # how many trees in forest
rfc.fit(x_train, y_train)
pred_rfc = rfc.predict(x1)
# print(classification_report(y_test,pred_rfc))
# print('This models accuracy is:')
# print(accuracy_score(y_test,pred_rfc))
return pred_rfc
def collectData():
# API request + json dump
r = requests.get(
"http://192.168.101.129:8181/restconf/operational/opendaylight-inventory:nodes",
auth=("admin", "admin"),
)
data = r.json()
with open("flowData.json", "w") as f:
json.dump(data, f)
with open("flowData.json", "r") as f:
data = json.load(f)
numOfCon = len(data["nodes"]["node"][1]["node-connector"])
for i in range(numOfCon):
a = data["nodes"]["node"][1]["node-connector"][i]["id"]
if a == "openflow:2:1":
b = data["nodes"]["node"][1]["node-connector"][i][
"opendaylight-port-statistics:flow-capable-node-connector-statistics"
]["packets"]["received"]
c = data["nodes"]["node"][1]["node-connector"][i][
"opendaylight-port-statistics:flow-capable-node-connector-statistics"
]["packets"]["transmitted"]
d = data["nodes"]["node"][1]["node-connector"][i][
"opendaylight-port-statistics:flow-capable-node-connector-statistics"
]["bytes"]["received"]
e = data["nodes"]["node"][1]["node-connector"][i][
"opendaylight-port-statistics:flow-capable-node-connector-statistics"
]["bytes"]["transmitted"]
entry1 = [b, c, d, e]
with open("flowDataset4.csv", "a", newline="") as myfile:
wr = csv.writer(myfile, quoting=csv.QUOTE_ALL)
wr.writerow(entry1)
# read from raw file
df = pd.read_csv("flowDataset4.csv")
df = df.dropna() # drop missing values
df_out = df.diff() # calculate difference from previous row
df_out = df_out.dropna() # drop missing values again
df_out.to_csv("flowDataset5.csv", index=False) # write to new file
# read new file
df3 = pd.read_csv("flowDataset5.csv")
xnew = df3.values[-1].tolist() # last row in file
# prediction
x_test1 = sc.transform([xnew])
somevar = Randomforest(x_test1)
print(xnew)
print(somevar)
xnew1 = int(somevar[0]) # convert label to int
xnew2 = [int(xnew[0]), int(xnew[1]), int(xnew[2]), int(xnew[3]), xnew1]
with open("flowDataset6.csv", "a", newline="") as myfile:
wr = csv.writer(myfile, quoting=csv.QUOTE_NONE)
wr.writerow(xnew2)
else:
pass
def printit():
global somevar
df = pd.read_csv("flowDataset5.csv")
# df = df.apply(pd.to_numeric)
x1 = df.values[-1].tolist()
print(x1)
x_test1 = sc.transform([x1])
ynew = Randomforest(x_test1)
print(ynew)
somevar = ynew
# print(metrics.accuracy_score(y_test,pred_rfc))
if __name__ == "__main__":
x = 0
while x < 500:
collectData()
print(x)
# printit()
time.sleep(6)
x += 1