-
Notifications
You must be signed in to change notification settings - Fork 2
/
config.py
executable file
·150 lines (128 loc) · 4.65 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# This file was adapted from the MAGMA repository:
# https://github.com/jmerullo/image-to-lm-mapping/blob/master/magma/config.py
from dataclasses import dataclass, asdict
import yaml
from pprint import pprint
from utils import is_main
import os
from pathlib import Path
import uuid
def load_config(path, config_dir=Path("configs")):
if not path.endswith(".yml"):
path += ".yml"
if not os.path.exists(path):
path = config_dir / path
with open(path, "r") as stream:
config = yaml.safe_load(stream)
return config
@dataclass
class MultimodalConfig:
# Training:
# ------------------------------------------------------------
batch_size: int
train_steps: int
optimizer_name: str = "AdamW"
lr: float = 8.0e-4
image_enc_lr: float = None
min_lr: float = 0.0
lr_decay_iters: int = None
gradient_accumulation_steps: int = 1
image_size: int = 256
eval_every: int = 250
eval_steps: int = 25
zero_stage: int = 2
gradient_clipping: float = 1.0
warmup_num_steps: int = 100
weight_decay: float = 0.00
run_blind: bool = False
fine_tune: bool = False
load_optimizer: bool = True
# Checkpointing:
# ------------------------------------------------------------
save_every: int = 2500
save: str = None
load: str = None
# Data:
# ------------------------------------------------------------
train_dataset_name: str = "conceptual captions"
eval_dataset_name: str = "na"
train_dataset_dir: str = "./"
eval_dataset_dir: str = "./"
encs_dir: str = 'vanilla'
eval_dataset_pct: float = 0.1
# Model architecture:
# ------------------------------------------------------------
encoder_name: str = "clip"
tokenizer_name: str = "gpt2"
lm_name: str = "EleutherAI/gpt-j-6B"
image_seq_len: int = 2
pretrained_img_encoder: bool = True
seq_len: int = None
# Layer Freezing settings:
# ------------------------------------------------------------
freeze_lm: bool = True
freeze_img_encoder: bool = True
image_embed_dropout_prob: float = 0.0
use_image_embed_layernorm: bool = False
# Adapter settings:
# ------------------------------------------------------------
adapter_config: dict = None
# Classification Finetuning settings:
# ------------------------------------------------------------
class_dict: dict = None # {num_classes: .., ckpt_path: .., classifier_type:, .., interface_type: .., interface_position: .., freeze_model: ..}
# Logging settings:
# ------------------------------------------------------------
name: str = None # name, just used for wandb logging
log_every: int = 1
wandb_project: str = "magma"
def print(self):
if is_main():
print("-" * 100)
pprint(self.__dict__, indent=4)
print("-" * 100)
def __post_init__(self):
self.is_classifier = self.class_dict is not None
if self.adapter_config is None:
self.adapter_config = {}
# Deepspeed Settings:
# ------------------------------------------------------------
if self.lr_decay_iters is None:
self.lr_scheduler = "WarmupLR"
self.scheduler_dict = {
"type": self.lr_scheduler,
"params": {
"warmup_min_lr": self.min_lr,
"warmup_max_lr": self.lr,
"warmup_num_steps": self.warmup_num_steps,
},
}
else:
self.lr_scheduler = "WarmupDecayLR"
self.scheduler_dict = {
"type": self.lr_scheduler,
"params": {
"total_num_steps": self.lr_decay_iters,
"warmup_min_lr": self.min_lr,
"warmup_max_lr": "auto",#self.lr,
"warmup_num_steps": self.warmup_num_steps,
"total_num_steps": "auto",
},
}
self.deepspeed_config_params = {
"train_batch_size": "auto",#self.batch_size,
"gradient_accumulation_steps": self.gradient_accumulation_steps,
"gradient_clipping": self.gradient_clipping,
"bf16": {"enabled": True, "loss_scale_window": 250},
"scheduler": self.scheduler_dict,
"zero_optimization": {
"stage": self.zero_stage,
"load_from_fp32_weights": False,
},
}
if self.name is None:
self.name = str(uuid.uuid4())[:8]
@classmethod
def from_yml(cls, path):
return cls(**load_config(path))
def to_dict(self):
return asdict(self)