forked from agottf/Indirect-Dark-Matter-Detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstatistics.nb
383 lines (356 loc) · 15.2 KB
/
statistics.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 15379, 375]
NotebookOptionsPosition[ 13374, 335]
NotebookOutlinePosition[ 13769, 351]
CellTagsIndexPosition[ 13726, 348]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell["\<\
The chi - square statistic follows the following distribution (see \
Wikipedia) :\
\>", "Text",
CellChangeTimes->{{3.819476290555231*^9, 3.819476305552944*^9}, {
3.819476544946924*^9, 3.819476598249662*^9},
3.819483712411277*^9},ExpressionUUID->"2811d511-fb9a-45bf-a8a1-\
b50fd3d60dd6"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"chisquare", "[",
RowBox[{"k_", ",", "x_"}], "]"}], "=",
RowBox[{
RowBox[{"1", "/",
RowBox[{"(",
RowBox[{
RowBox[{"2", "^",
RowBox[{"(",
RowBox[{"k", "/", "2"}], ")"}]}], "*",
RowBox[{"Gamma", "[",
RowBox[{"k", "/", "2"}], "]"}]}], ")"}]}],
RowBox[{"x", "^",
RowBox[{"(",
RowBox[{
RowBox[{"k", "/", "2"}], "-", "1"}], ")"}]}], "*",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "x"}], "/", "2"}], "]"}]}]}]], "Input",
CellChangeTimes->{{3.819476307129508*^9, 3.819476394310706*^9}},
CellLabel->"In[34]:=",ExpressionUUID->"859779eb-8456-49e3-8dc5-c7f7cf3dbe34"],
Cell[BoxData[
FractionBox[
RowBox[{
SuperscriptBox["2",
RowBox[{
RowBox[{"-", "k"}], "/", "2"}]], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "x"}], "/", "2"}]], " ",
SuperscriptBox["x",
RowBox[{
RowBox[{"-", "1"}], "+",
FractionBox["k", "2"]}]]}],
RowBox[{"Gamma", "[",
FractionBox["k", "2"], "]"}]]], "Output",
CellChangeTimes->{3.819476395583006*^9, 3.819845200268044*^9,
3.819850067236471*^9, 3.820080947644746*^9},
CellLabel->"Out[34]=",ExpressionUUID->"0c42be49-815b-4535-bda9-f225c5fe967e"]
}, Open ]],
Cell["\<\
k is the number of degrees of freedom, which in our case is the number of \
fitted parameters. We are fitting one parameter, < \[Sigma]v >, for each \
value of mass, so in our case k=1.\
\>", "Text",
CellChangeTimes->{{3.819476398535204*^9, 3.819476537227666*^9}, {
3.8194766629527473`*^9, 3.819476682863504*^9}, 3.81947688307793*^9, {
3.819478653513195*^9,
3.819478675799678*^9}},ExpressionUUID->"42ca9555-0898-4c7c-bda9-\
ae007b2a6a07"],
Cell["\<\
Say we discover dark matter. Wilks' theorem tells us that 2 \[CapitalDelta] \
ln L (which is a function of < \[Sigma]v >) follows the chi - square \
distribution, so if I want to find what value of 2 \[CapitalDelta] ln L \
corresponds to 95% exclusion, I can integrate the chi-square distribution and \
find where that integral = 0.95\.00\
\>", "Text",
CellChangeTimes->{{3.819478754079067*^9, 3.819478773606072*^9},
3.8194807509829197`*^9, {3.8194807901487703`*^9, 3.819480876355496*^9}, {
3.81948243993327*^9, 3.819482546274271*^9}, {3.819482623888747*^9,
3.819482774140287*^9}, {3.8194828319865*^9, 3.819482901488882*^9}, {
3.819482964223503*^9, 3.819482982822383*^9}, {3.8194830600690002`*^9,
3.819483060452641*^9},
3.819483153993534*^9},ExpressionUUID->"8fdeb62d-7d61-43f8-be97-\
4b47ce1363af"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"FindRoot", "[",
RowBox[{
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"chisquare", "[",
RowBox[{"1", ",", "x"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "x0"}], "}"}]}], "]"}], "\[Equal]",
".95"}], ",",
RowBox[{"{",
RowBox[{"x0", ",", ".5"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.819482905081365*^9, 3.819482921616246*^9}, {
3.819482986480048*^9, 3.81948300615*^9}, 3.819483065214307*^9},
CellLabel->"In[35]:=",ExpressionUUID->"2e35367d-e5cf-4552-8cfd-3126f9d93032"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"x0", "\[Rule]", "3.841458820694123`"}], "}"}]], "Output",
CellChangeTimes->{
3.819482922260963*^9, {3.819482998171693*^9, 3.819483007503481*^9},
3.81948306703342*^9, 3.819845201747013*^9, 3.8198500684833612`*^9,
3.8200809492285643`*^9},
CellLabel->"Out[35]=",ExpressionUUID->"fe55756a-88f2-4e44-aade-e23b106c65f0"]
}, Open ]],
Cell["\<\
So values of < \[Sigma]v > that give 2 \[CapitalDelta] ln L > 3.84 are \
excluded at 95 % CL. These will be values of < \[Sigma]v > that are either \
too big or too small relative to the actual value.\
\>", "Text",
CellChangeTimes->{{3.8194830691646357`*^9,
3.819483184208899*^9}},ExpressionUUID->"efdbf91e-60e2-4c4d-b533-\
e7f4b975b941"],
Cell["\<\
However, we have not discovered dark matter. Instead we are just setting an \
upper limit on the cross section. So to find the values that are excluded at \
95 % CL, we have to find where the previous integral is actually equal to 0.90\
\>", "Text",
CellChangeTimes->{{3.819483014726132*^9, 3.819483023773728*^9}, {
3.8194831858651323`*^9, 3.819483206688637*^9}, {3.819483248535671*^9,
3.819483258280119*^9}, {3.819483299870734*^9, 3.8194833766042643`*^9}, {
3.81948343751512*^9, 3.819483469105626*^9}, {3.819483606310753*^9,
3.819483614844232*^9}, {3.81948375644246*^9, 3.819483758105933*^9}, {
3.819483841515684*^9,
3.8194838428279343`*^9}},ExpressionUUID->"aca93f53-6864-4a9b-af30-\
5c8c1d496efd"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"FindRoot", "[",
RowBox[{
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"chisquare", "[",
RowBox[{"1", ",", "x"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "x0"}], "}"}]}], "]"}], "\[Equal]",
".90"}], ",",
RowBox[{"{",
RowBox[{"x0", ",", ".5"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.819483484489943*^9, 3.8194834852014847`*^9}},
CellLabel->"In[36]:=",ExpressionUUID->"ac89bb7b-10ee-4486-90e2-414212fc15fe"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"x0", "\[Rule]", "2.705543454095414`"}], "}"}]], "Output",
CellChangeTimes->{3.819483485777671*^9, 3.819845202712644*^9,
3.819850069365741*^9, 3.820080950340849*^9},
CellLabel->"Out[36]=",ExpressionUUID->"d3ad72a4-4082-4122-a7d6-8ac5968a22b4"]
}, Open ]],
Cell["\<\
Which is the number you are familiar with. The idea here is that we can only \
exclude values of < \[Sigma]v > that are too large, not too small as before, \
so the \[OpenCurlyDoubleQuote]missing\[CloseCurlyDoubleQuote] 5% comes from \
the fact that the low values are now allowed. \
\>", "Text",
CellChangeTimes->{{3.8194834882255163`*^9, 3.8194835559873543`*^9}, {
3.8194836505017643`*^9, 3.819483670511067*^9}, {3.8194838458356867`*^9,
3.819483881226954*^9}, {3.8194839181059732`*^9,
3.8194839218818398`*^9}},ExpressionUUID->"94fae0ae-523b-49a9-9065-\
19546b59a60e"],
Cell["\<\
I' m hiding alot in this discussion -- mainly how this is all ultimately \
derived from Gaussian statistics, making the whole one - sided limit argument \
a bit more sensible, but that is talked about a bit in the review I sent you, \
I think...\
\>", "Text",
CellChangeTimes->{{3.8194780623745604`*^9, 3.8194780865648212`*^9}, {
3.8194840659173613`*^9, 3.819484110533053*^9}, {3.819484145364464*^9,
3.8194841700835752`*^9}, {3.81948420113557*^9,
3.819484209570443*^9}},ExpressionUUID->"26f2771c-dda3-434f-b8ac-\
2548b79be957"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{"chisquare", "[",
RowBox[{"1", ",", "x"}], "]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "5"}], "}"}], ",",
RowBox[{"PlotLegends", "\[Rule]", "\"\<Expressions\>\""}]}],
"]"}]], "Input",
CellChangeTimes->{{3.819845203026217*^9, 3.81984528367583*^9}, {
3.8198453392876587`*^9, 3.819845473748396*^9}, {3.8198455098511257`*^9,
3.819845517810563*^9}, {3.820080940680637*^9, 3.820080941180888*^9}},
CellLabel->"In[37]:=",ExpressionUUID->"9cc73f83-e7bf-4790-97fb-26049a2a5419"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVz3k81PkDx3H3Rip8S4hJVikdtLFS6f0p6XK0rk1KQo5FWdYUYVeHq9aY
pAxl5SqEVEooFIXcxjXOGTOOJm0Hykj89vfH6/H8+7XK1c/GXUJMTCzov/6v
7bPh1hhmGxx8W5JWRAjgidak8QA2khhPHKoEfIilfyntvcKGhaFSy+Z2PlhS
6n1vMtmof9SwtryKj9o6D1pOJxsxC8KW6GXwsdZuNt19WzsYPYnznm58jHnp
5A2IdyASJ/9+PzYE7/iw8hZmJ5Z9PXt+t8wQJKbSBytyOlEY0M1tn+Yh+XCt
2P2XnTA0qVANfcfDG3XKNHayEwU6w9sXtPKw/m52zQGHLiz3vealmMLDeBm7
5eXKblysrVYs28rD6eF1/KICDq4fPmOxIYwL7nHOghd1HEz6kiQ5fy5su6M3
NQo4OLcuvGvmJBdb60eDh9V6YHPQOVDBkgvJB1kKylE9yD5q5bGQxgUrdNXO
s869yNlumGQUOYgXlGqSsUI/Xql1Ze7cPACD2Npys/X9YL3KNRlQH8AdmSCB
9d5++Eb7hrMWDOBvUaeed2g/LgdJqBzj9uPXwYTXyWP9sDYqMFO92g9hrsLk
t8oBjIXHX97+tQ9yqy7pDG7lQvb7FnZFey9qd1zV+9OMi8dqqT8GVfci0uEf
Iw0bLpbWRx7aXdQLCebTfUd9uLiUqfZkYUIvZubGPbtS/vs894uRn10v3vXZ
ZzdL8ECPT+I6dfeggaWzrrKBBxplqKUwzsHlIoPNzhwebrTHfK7r52B/yy7j
uWEefv7xi1J8MwfVPxw7sGOeB8+RtQKLRxw8O8P87enmISTMzhl4h3CQbyfK
KbwxBEsruXy9xRwwFOp1007woW3tZ29t0o0SI43HVqf5sE8yn72p1w3BcT/M
hvDhN/DH8clV3dieT9kdTuRD3/a4qFGmG2MHjoUtauLDwdhdWau1C6YX3zcH
bxdgdbrK3DavLkxPLaHbKA/D+4BwIi21E669dhWSDSMwCB9vdNHrgNxN3il/
zghWasoqF2t34KHjafXBkREYbpp1WabWAcmeqOBS8VHUsbLY41IdyOwu3eJv
NAqDKa0a6d52jHRoZg+kj+KuV0pER3Q7vFvGmSXBY8grU8pLEbLh/+qSq5+O
EP/SzGm3qttAE+yV+bJFCJlFMsqBz9pQLyGbG0qEeGth8cy6qA2rSeynmCNC
zBxR/qaR2QZO6fXwzCtC0K+rxYsutmFX4Z1/OB+EMI7WfVO8pw2KN2t7TJ++
wzvZzgCdN6148Lu8rcqB91hTHPFTNr8FaSE+Qv3DH+GVO7K82qYJF1JnrSfH
P0GJ4R9Fj62HGJtLnp2bgN+gsn7ixjqsCfQIstOdwm2fxbKGwtcQTCX+uvD5
F7AL/jyhI/8KB4e9w+L9p6FRyCrRRhWsBMz1NNoMgn0/+xfcewFhlWt4bf43
nI0pfSd5pBKbFDs1TJ2/ozy8Ld9HrRxymHLpm5iDTPi/SXZvy7DvveNXLXsx
MmdS1iz/ogTdL0+KO24QJ7Mam3673F6Mx9HVxzWnxMmYm6c5Xf8JPKTp3KYm
CaKctXt0X1wR3AJCHssnS5Lg0pP+UrqPoOe5vsnCRYr45vlvFY08QLPShoV0
Y2nCkVu+VDazEGUFF25ukJQhDhW7tq5Vv48Qcd1fGvplyNtKd4uhD3mQ6zu3
/3TRD6TBQNtyz3Quhu+sSkgNXUD8OcorVcxykLBWVarEXpa8MnutcyPuLpjJ
HjUumnKkWtJyvnbpHTgmODXJj8oRLyNi8bY0E9N7skSp5QvJ75mhSzucMsAf
3h30MkqePMowsGrelI50k80rGl0WkS+R6cVLvt9GfgRd0XPjYmLiXCx7ZSQV
UfZu5pJTiwnlWxgYOZ8Cw760nKjGJUSrOn7+ltItsNbdzG80VyBGh1hnrN2T
8VdlLMu8RIE84Lk9V33EguUK+6w32orEy3HofOfqROw6XXNUMUaR8ONnVCzr
ryNV3VW7YUqRpHvYhgz5JEC76u4Nq6NKZICTVrXI+BqYG1/qtpUrkVn13OX1
tHh4TEi11ulS5GngiR7BPBOuDz5rxsRRpPwPtouaNBO+F2xnD16lyGQRed8v
xgTdtqhL/hpFbisLDpmJ4hA9RWcwb1BET9vN1nksDgXGom+JKRQJWLEz5/7r
OIhezHfeuUeRntShj5UX48Bsk4+trqFIi5WlWNo8A8kZp7wi6yiSUtYQHfCV
gYzAJtP99RTRKbc5svcDA0+UmTP1TRRxWv6weXKAgT5HyovdQZGqJdFzvuUM
6PBVTYf4FPH7mFZfF8aAftE5WuYwRYq+nr1QQWdgW0SvyH2UIhujTp0pPsWA
hU5K4VshRf6iS1MFTgwE+GjSPn2iSNZ9FfknJgyE7jgvejhBEeEF1aTnhgxE
LBpqD5yiSPCaPqeajQyw7mdcmZ6myH6z2Ss8DQbSw6U8S2coUiohPflpGQP3
rN13h85SJHvpmqtSixko0nqtsXOOIszcx66qMgyUT6wRzc9TJG+DnJf+XCz+
B+AErPA=
"]]},
Annotation[#, "Charting`Private`Tag$51581#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 5}, {0., 0.6412485126669578}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.81984522739814*^9, 3.819845238966604*^9},
3.819845284695301*^9, {3.819845348188501*^9, 3.819845420846971*^9}, {
3.81984545089968*^9, 3.8198454743647547`*^9}, 3.819845518577795*^9,
3.8198500696289253`*^9, {3.820080942156447*^9, 3.8200809504818163`*^9}},
CellLabel->"Out[37]=",ExpressionUUID->"77731c26-eb16-45d0-ada0-2febead97d4d"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"chisquare", "[",
RowBox[{"1", ",", "x"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "2.705"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8198461546626167`*^9, 3.819846171789031*^9}, {
3.819850058710594*^9, 3.819850061962161*^9}},
CellLabel->"In[38]:=",ExpressionUUID->"ed9a39fc-5288-49b9-b820-48e43afa2cae"],
Cell[BoxData["0.8999659179902629`"], "Output",
CellChangeTimes->{3.819846172555481*^9, 3.819850070031502*^9,
3.8200809509656057`*^9},
CellLabel->"Out[38]=",ExpressionUUID->"f7547c5e-da25-4d43-8281-36b4e0b399fb"]
}, Open ]]
},
WindowSize->{954, 911},
WindowMargins->{{4, Automatic}, {Automatic, 4}},
FrontEndVersion->"12.2 for Mac OS X x86 (64-bit) (December 12, 2020)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"5db82c24-88c9-4d0d-988e-d3e6b0019deb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 305, 7, 35, "Text",ExpressionUUID->"2811d511-fb9a-45bf-a8a1-b50fd3d60dd6"],
Cell[CellGroupData[{
Cell[888, 31, 686, 21, 30, "Input",ExpressionUUID->"859779eb-8456-49e3-8dc5-c7f7cf3dbe34"],
Cell[1577, 54, 576, 17, 70, "Output",ExpressionUUID->"0c42be49-815b-4535-bda9-f225c5fe967e"]
}, Open ]],
Cell[2168, 74, 459, 9, 58, "Text",ExpressionUUID->"42ca9555-0898-4c7c-bda9-ae007b2a6a07"],
Cell[2630, 85, 834, 14, 81, "Text",ExpressionUUID->"8fdeb62d-7d61-43f8-be97-4b47ce1363af"],
Cell[CellGroupData[{
Cell[3489, 103, 584, 15, 30, "Input",ExpressionUUID->"2e35367d-e5cf-4552-8cfd-3126f9d93032"],
Cell[4076, 120, 366, 7, 34, "Output",ExpressionUUID->"fe55756a-88f2-4e44-aade-e23b106c65f0"]
}, Open ]],
Cell[4457, 130, 352, 7, 58, "Text",ExpressionUUID->"efdbf91e-60e2-4c4d-b533-e7f4b975b941"],
Cell[4812, 139, 726, 12, 58, "Text",ExpressionUUID->"aca93f53-6864-4a9b-af30-5c8c1d496efd"],
Cell[CellGroupData[{
Cell[5563, 155, 518, 14, 30, "Input",ExpressionUUID->"ac89bb7b-10ee-4486-90e2-414212fc15fe"],
Cell[6084, 171, 287, 5, 34, "Output",ExpressionUUID->"d3ad72a4-4082-4122-a7d6-8ac5968a22b4"]
}, Open ]],
Cell[6386, 179, 588, 10, 58, "Text",ExpressionUUID->"94fae0ae-523b-49a9-9065-19546b59a60e"],
Cell[6977, 191, 546, 10, 58, "Text",ExpressionUUID->"26f2771c-dda3-434f-b8ac-2548b79be957"],
Cell[CellGroupData[{
Cell[7548, 205, 590, 13, 30, "Input",ExpressionUUID->"9cc73f83-e7bf-4790-97fb-26049a2a5419"],
Cell[8141, 220, 4555, 93, 239, "Output",ExpressionUUID->"77731c26-eb16-45d0-ada0-2febead97d4d"]
}, Open ]],
Cell[CellGroupData[{
Cell[12733, 318, 406, 9, 30, "Input",ExpressionUUID->"ed9a39fc-5288-49b9-b820-48e43afa2cae"],
Cell[13142, 329, 216, 3, 57, "Output",ExpressionUUID->"f7547c5e-da25-4d43-8281-36b4e0b399fb"]
}, Open ]]
}
]
*)