This repository was archived by the owner on Mar 19, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmovements.c
312 lines (237 loc) · 10.6 KB
/
movements.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
#include "molecular-simulator.h"
bool protein_do_movement(struct protein *self, gsl_rng *rng,
enum protein_movements m, size_t k)
{
bool status = false;
switch (m) {
case PROTEIN_SPIKE_MOVE:
status = protein_do_spike_move(self, rng, k);
break;
case PROTEIN_SHIFT_MOVE:
status = protein_do_shift_move(self, rng, k);
break;
case PROTEIN_PIVOT_MOVE:
status = protein_do_pivot_move(self, rng, k);
break;
case PROTEIN_END_MOVE_FIRST:
status = protein_do_end_move_first(self, rng);
break;
case PROTEIN_END_MOVE_LAST:
status = protein_do_end_move_last(self, rng);
break;
}
return status;
}
bool protein_do_natural_movement(struct protein *self, gsl_rng *rng, size_t k)
{
/* dprintf("thread #%d is changing atom %u\n", omp_get_thread_num(), k); */
if (k == 0) {
return protein_do_end_move_first(self, rng);
} else if (1 <= k && k <= self->num_atoms-2) {
return protein_do_movement(self, rng, gsl_rng_uniform_int(rng, 2), k);
} else {
return protein_do_end_move_last(self, rng);
}
}
bool protein_is_overlapping(const struct protein *self, size_t start, size_t end)
{
const size_t N = self->num_atoms;
const double bead_diameter = 1.1*3.8;
for (size_t i = start; i < end; i++) {
for (size_t j = 0; j < N; j++) {
if (j == i - 1 || j == i || j == i + 1)
continue;
if (protein_distance(self, i, j) < bead_diameter) {
dprintf("overlap of %g between atoms %u and %u\n",
protein_distance(self, i, j), i, j);
return true;
}
}
}
return false;
}
bool protein_do_end_move_first(struct protein *self, gsl_rng *rng)
{
dprintf("moving first atom.\n");
dprintf("before: atom(0) == "); dprint_vector(self->atom[0]);
double R[3][3];
make_random_rotation_matrix(R, rng);
gsl_matrix_view RV = gsl_matrix_view_array((double *) R, 3, 3);
rotate(false, &RV.matrix, self->atom[1], self->atom[0]);
dprintf("after: atom(0) == "); dprint_vector(self->atom[0]);
if (protein_is_overlapping(self, 0, 1)) {
rotate(true, &RV.matrix, self->atom[1], self->atom[0]);
dprintf("after undo: atom(0) == "); dprint_vector(self->atom[0]);
return false;
}
return true;
}
bool protein_do_end_move_last(struct protein *self, gsl_rng *rng)
{
dprintf("moving last atom.\n");
dprintf("before: atom(%d) == ", self->num_atoms-1);
dprint_vector(self->atom[self->num_atoms - 1]);
const size_t N = self->num_atoms;
double R[3][3];
make_random_rotation_matrix(R, rng);
gsl_matrix_view RV = gsl_matrix_view_array((double *) R, 3, 3);
rotate(false, &RV.matrix, self->atom[N-2], self->atom[N-1]);
dprintf("after: atom(%d) == ", N-1);
dprint_vector(self->atom[N-1]);
if (protein_is_overlapping(self, N-1, N)) {
rotate(true, &RV.matrix,
self->atom[N - 2],
self->atom[N - 1]);
dprintf("after undo: atom(%d) == ", N-1);
dprint_vector(self->atom[N-1]);
return false;
}
return true;
}
bool protein_do_shift_move(struct protein *self, gsl_rng *rng, size_t k)
{
assert(k <= self->num_atoms - 3);
bool status = true;
dprintf("shifting move at atom %u\n", k);
dprintf("before: atom(%u) == ", self->num_atoms-1); dprint_vector(self->atom[self->num_atoms-1]);
dprintf("before: atom(%u) == ", k+1); dprint_vector(self->atom[k+1]);
double R[3][3];
make_random_rotation_matrix(R, rng);
gsl_matrix_const_view RV = gsl_matrix_const_view_array((double *) R, 3, 3);
/*
* 1. Take a consecutive pair of atoms: a(k) and a(k+1).
* 2. Apply a random rotation to the vector joining them.
* 3. Translate the atoms a(k+2) ... a(num_atoms-1) so that
* the connectivity of the chain is maintained.
*/
gsl_vector *bak = gsl_vector_alloc(3);
gsl_vector_memcpy(bak, self->atom[k+1]);
/* t = atom(k+1) - R atom(k+1) */
declare_stack_allocated_vector(t, 3);
gsl_vector_memcpy(t, self->atom[k+1]);
rotate(false, &RV.matrix, self->atom[k], self->atom[k+1]);
gsl_vector_sub(t, self->atom[k+1]);
for (size_t i = k+2; i < self->num_atoms; i++)
gsl_vector_sub(self->atom[i], t);
dprintf("after: atom(%u) == ", self->num_atoms-1); dprint_vector(self->atom[self->num_atoms-1]);
dprintf("after: atom(%u) == ", k+1); dprint_vector(self->atom[k+1]);
if (protein_is_overlapping(self, k+1, self->num_atoms)) {
dprintf("undoing shift movement.\n");
for (size_t i = k+2; i < self->num_atoms; i++)
gsl_vector_add(self->atom[i], t);
dprintf("after undo: atom(%u) == ", self->num_atoms-1); dprint_vector(self->atom[self->num_atoms-1]);
gsl_vector_memcpy(self->atom[k+1], bak);
dprintf("after undo: atom(%u) == ", k+1); dprint_vector(self->atom[k+1]);
status = false;
}
gsl_vector_free(bak);
return status;
}
bool protein_do_spike_move(struct protein *self, gsl_rng *rng, size_t k)
{
bool status = true;
const double theta = 2*M_PI*gsl_rng_uniform_pos(rng);
gsl_vector *bak = gsl_vector_alloc(3);
gsl_vector_memcpy(bak, self->atom[k]);
dprintf("before: atom(%u) == ", k); dprint_vector(self->atom[k]);
/* v = p3-p1 */
gsl_vector *v = gsl_vector_alloc(3);
gsl_vector_memcpy(v, self->atom[k+1]);
gsl_vector_sub(v, self->atom[k-1]);
vector_normalize(v);
/* a = p2-p1 */
gsl_vector *a = gsl_vector_alloc(3);
gsl_vector_memcpy(a, self->atom[k]);
gsl_vector_sub(a, self->atom[k-1]);
/* w = <a, v> v */
gsl_vector *w = gsl_vector_alloc(3);
gsl_vector_memcpy(w, v);
double len;
gsl_blas_ddot(a, v, &len);
gsl_vector_scale(w, len);
/* t = p1 + w */
gsl_vector *t = gsl_vector_alloc(3);
gsl_vector_memcpy(t, w);
gsl_vector_add(t, self->atom[k-1]);
/* q = atom[k] - t */
gsl_vector *q = gsl_vector_alloc(3);
gsl_vector_memcpy(q, self->atom[k]);
gsl_vector_sub(q, t);
gsl_matrix *G = gsl_matrix_alloc(3, 3);
gsl_vector_view u0 = gsl_matrix_column(G, 0);
gsl_vector_view u1 = gsl_matrix_column(G, 1);
gsl_vector_view u2 = gsl_matrix_column(G, 2);
gsl_vector_memcpy(&u0.vector, q);
vector_normalize(&u0.vector);
gsl_vector_memcpy(&u2.vector, w);
vector_normalize(&u2.vector);
cross_product(&u0.vector, &u2.vector, &u1.vector);
assert(gsl_fcmp(gsl_blas_dnrm2(&u1.vector), 0.0, 1e-3) != 0);
/* XXX This code could be replaced by BLAS' DROT. */
double R[3][3] = {{cos(theta), -sin(theta), 0.0},
{sin(theta), cos(theta), 0.0},
{ 0.0, 0.0, 1.0}};
gsl_matrix_const_view RV = gsl_matrix_const_view_array((double *) R, 3, 3);
gsl_matrix *A = gsl_matrix_alloc(3, 3);
gsl_matrix *B = gsl_matrix_alloc(3, 3);
gsl_blas_dgemm(CblasNoTrans, CblasTrans, 1.0, &RV.matrix, G, 0.0, A);
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, G, A, 0.0, B);
gsl_vector *z = gsl_vector_alloc(3);
gsl_blas_dgemv(CblasNoTrans, 1.0, B, q, 0.0, z);
gsl_vector_add(z, t);
gsl_vector_memcpy(self->atom[k], z);
dprintf("after: atom(%d) == ", k); dprint_vector(self->atom[k]);
/* We are done if the conformation is correct. */
if (protein_is_overlapping(self, k, k+1)) {
gsl_vector_memcpy(self->atom[k], bak);
dprintf("after undo: atom(%d) == ", k); dprint_vector(self->atom[k]);
status = false;
}
gsl_vector_free(bak);
gsl_vector_free(v); gsl_vector_free(a); gsl_vector_free(w);
gsl_vector_free(t); gsl_vector_free(q); gsl_vector_free(z);
gsl_matrix_free(G); gsl_matrix_free(A); gsl_matrix_free(B);
return status;
}
bool protein_do_pivot_move(struct protein *self, gsl_rng *rng, size_t k)
{
const double theta = 2*M_PI*gsl_rng_uniform_pos(rng);
dprintf("pivoting move at atom %u.\n", k);
dprintf("before: atom(%d) == ", k+1);
dprint_vector(self->atom[k+1]);
/* XXX This code could be replaced by BLAS' DROT. */
double RR[3][3] = {{cos(theta), -sin(theta), 0.0},
{sin(theta), cos(theta), 0.0},
{ 0.0, 0.0, 1.0}};
gsl_matrix_const_view RV = gsl_matrix_const_view_array((double *) RR, 3, 3);
declare_stack_allocated_vector(y, 3);
for (size_t i = k+1; i < self->num_atoms; i++) {
gsl_vector_memcpy(y, self->atom[k]);
gsl_vector_sub(self->atom[i], y);
gsl_blas_dgemv(CblasNoTrans, 1.0, &RV.matrix, self->atom[i], 1.0, y);
gsl_vector_memcpy(self->atom[i], y);
}
dprintf("after: atom(%d) == ", k+1);
dprint_vector(self->atom[k+1]);
if (protein_is_overlapping(self, k+1, self->num_atoms)) {
dprintf("undoing invalid conformation.\n");
for (size_t i = k+1; i < self->num_atoms; i++) {
gsl_vector_memcpy(y, self->atom[k]);
gsl_vector_sub(self->atom[i], y);
gsl_blas_dgemv(CblasTrans, 1.0,
&RV.matrix, self->atom[i],
1.0, y);
gsl_vector_memcpy(self->atom[i], y);
}
dprintf("after undo: atom(%d) == ", k+1);
dprint_vector(self->atom[k+1]);
return false;
}
return true;
}
void protein_scramble(struct protein *self, gsl_rng *rng)
{
for (size_t r = 0; r < 10*self->num_atoms; r++)
for (size_t k = 0; k < self->num_atoms; k++)
protein_do_natural_movement(self, rng, k);
}