-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpocket_fine_tuning_rmse.py
235 lines (184 loc) · 8.43 KB
/
pocket_fine_tuning_rmse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# -*- coding:utf-8 -*-
# @Author: jikewang
# @Time: 2023/10/8 17:55
# @File: pocket_fine_tuning.py
import pickle
import torch
import argparse
import numpy as np
from pathlib import Path
from tqdm.auto import tqdm
from torch.optim import AdamW, Adam
from transformers import get_scheduler, GPT2Config
from torch.utils.data import Dataset, DataLoader
from early_stop.pytorchtools import EarlyStopping
from bert_tokenizer import ExpressionBertTokenizer
from ada_model import Token3D
from utils.utils import cal_loss_and_accuracy, gce_loss_and_accuracy
# cross-attention+self-attention
Ada_config = GPT2Config(
architectures=["GPT2LMHeadModel"],
model_type="GPT2LMHeadModel",
vocab_size=836,
n_positions=380,
n_ctx=380, # max length
n_embd=768,
n_layer=12,
n_head=8,
task_specific_params={
"text-generation": {
"do_sample": True,
"max_length": 380
}
}
)
def setup_args():
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', default="Pretrained_model", type=str, help='')
parser.add_argument('--vocab_path', default="./data/torsion_version/torsion_voc_pocket.csv", type=str, help='')
parser.add_argument('--every_step_save_path', default="Trained_model/pocket_generation", type=str, help='')
parser.add_argument('--early_stop_path', default="Trained_model/pocket_generation", type=str, help='')
parser.add_argument('--batch_size', default=32, type=int, required=False, help='batch size')
parser.add_argument('--epochs', default=100, type=int, required=False, help='epochs')
parser.add_argument('--warmup_steps', default=20000, type=int, required=False, help='warm up steps')
parser.add_argument('--lr', default=5e-3, type=float, required=False, help='learn rate')
parser.add_argument('--max_grad_norm', default=1.0, type=float, required=False)
parser.add_argument('--log_step', default=10, type=int, required=False, help='print log steps')
return parser.parse_args()
class MyDataset(Dataset):
def __init__(self, data_list):
self.data_list = data_list
def __getitem__(self, index):
input_ids = self.data_list[index]
return input_ids
def __len__(self):
return len(self.data_list)
def collate_fn(mix_batch):
batch, protein_batch = list(zip(*mix_batch))
input_ids = []
input_lens_list = [len(w) for w in batch]
input_protein_len_list = [len(ww) for ww in protein_batch]
max_input_len = max(input_lens_list)
max_protein_len = max(input_protein_len_list)
# create a zero array for padding protein batch
protein_ids = np.zeros((len(protein_batch), max_protein_len, len(protein_batch[0][0])),
dtype=protein_batch[0][0].dtype)
for btc_idx in range(len(batch)):
input_len = len(batch[btc_idx])
input_ids.append(batch[btc_idx])
input_ids[btc_idx].extend([tokenizer.pad_token_id] * (max_input_len - input_len))
# padding protein
protein_ids[btc_idx, :len(protein_batch[btc_idx]), :] = protein_batch[btc_idx]
return torch.tensor(input_ids, dtype=torch.long), torch.tensor(protein_ids, dtype=torch.float32)
def data_loader(args, train_data, matrix_protein, tokenizer, shuffle):
data_list = []
for ind, data_i in tqdm(enumerate(train_data)):
# data_i = data_i.replace('GEO', '')
data_i = '<|beginoftext|> <|mask:0|> <|mask:0|> ' + data_i + ' <|endofmask|>'
mol_ = [tokenizer.encode(data_i, truncation=False, max_length=200, return_special_tokens_mask=True,
add_special_tokens=False)]
mol_.append(matrix_protein[ind])
data_list.append(mol_)
dataset = MyDataset(data_list)
dataloader = DataLoader(dataset=dataset,
batch_size=args.batch_size,
shuffle=shuffle,
collate_fn=collate_fn)
return dataloader
def train(args, model, dataloader, eval_dataloader):
num_training_steps = args.epochs * len(dataloader)
optimizer = AdamW(model.parameters(), lr=args.lr)
lr_scheduler = get_scheduler(
name="linear",
optimizer=optimizer,
num_warmup_steps=args.warmup_steps,
num_training_steps=num_training_steps
)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model.to(device)
# model.train()
batch_steps = 0
for epoch in tqdm(range(args.epochs)):
model.train()
epoch_loss_list = []
print("\n")
print("***********")
print(optimizer.state_dict()['param_groups'][0]['lr'])
print("***********")
print("\n")
for mix_batch in dataloader:
batch, protein_batch = mix_batch
batch_steps += 1
batch = batch.to(device)
protein_batch = protein_batch.to(device)
outputs = model(batch, protein_batch)
loss_conf, acc_conf = gce_loss_and_accuracy(outputs, batch.to(device), device)
loss_smiles, acc_smiles = cal_loss_and_accuracy(outputs, batch.to(device), device)
# Weight of conf and smiles loss can be adjusted
loss = (loss_conf + loss_smiles) / 2
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
if batch_steps % args.log_step == 0:
print("train epoch {}/{}, batch {}/{}, loss {}".format(
epoch, args.epochs,
batch_steps,
num_training_steps,
loss, acc_conf, acc_smiles
))
every_save_path = f"{args.every_step_save_path}"
torch.save(model.state_dict(), every_save_path + '.pt')
evaluate(model, eval_dataloader, args=args)
# torch.save(model, os.path.join(args.final_model_path, 'gpt2_WenAn.pth'))
def evaluate(model, dataloader, args):
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
# model = GPT2LMHeadModel.from_pretrained(args.save_model_path)
# model.load_state_dict(torch.load('final_model_early_stop.pt'))
model.to(device)
model.eval()
loss_list, acc_list = [], []
batch_steps = 0
early_stopping = EarlyStopping(patience=20, verbose=False)
with torch.no_grad():
for mix_batch in dataloader:
batch, protein_batch = mix_batch
batch_steps += 1
batch = batch.to(device)
protein_batch = protein_batch.to(device)
outputs = model(batch, protein_batch)
loss, acc = gce_loss_and_accuracy(outputs, batch.to(device), device)
loss_list.append(float(loss))
acc_list.append(float(acc))
epoch_loss = np.mean(loss_list)
early_stopping(epoch_loss, model, args.early_stop_path)
print("loss: {},".format(np.mean(loss_list)),
"accuracy: {}.".format(np.mean(acc_list)))
def get_parameter_number(model):
total_num = sum(p.numel() for p in model.parameters())
trainable_num = sum(p.numel() for p in model.parameters() if p.requires_grad)
return {'Total': total_num, 'Trainable': trainable_num}
def read_data(path):
data = []
with open(path, 'rb') as f:
while True:
try:
aa = pickle.load(f)
data.extend(aa)
except EOFError:
break
return data
if __name__ == '__main__':
args = setup_args()
args.model_path = './Pretrained_model'
tokenizer = ExpressionBertTokenizer.from_pretrained(args.vocab_path)
save_path = Path(args.every_step_save_path).parent.mkdir(exist_ok=True)
protein_matrix = read_data('./data/train_protein_represent.pkl')
mol_data = read_data('./data/mol_input.pkl')
eval_protein = read_data('./data/val_protein_represent.pkl')
eval_mol = read_data('./data/val_mol_input.pkl')
model = Token3D(pretrain_path=args.model_path, config=Ada_config)
train_dataloader = data_loader(args, mol_data, protein_matrix, tokenizer=tokenizer, shuffle=True)
eval_dataloader = data_loader(args, eval_mol, eval_protein, tokenizer=tokenizer, shuffle=True)
train(args, model, train_dataloader, eval_dataloader)