-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindicator_draw_learning_graph.py
76 lines (58 loc) · 2.61 KB
/
indicator_draw_learning_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# Draw learning graph of single hyperparameter
import argparse
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.interpolate import make_interp_spline
parser = argparse.ArgumentParser()
parser.add_argument("--study-name", help="Study name used during hyperparameter optimization", type=str, default=None)
parser.add_argument("--parameter-id", type=int, default=None)
parser.add_argument("--n-runs", type=int, default=None)
args = parser.parse_args()
study_dir = './indicator_hyperparameters/' + args.study_name
param_id = args.parameter_id
eval_log_dir = study_dir + '/eval_logs/hyperparameter_' + str(param_id) + '/'
result_per_timestep = {}
# Load data
for i in range(args.n_runs):
eval_run_log_dir = eval_log_dir + 'run_' + str(i) + '/'
eval_run_log = eval_run_log_dir + 'evaluations.npz'
data = np.load(eval_run_log)
data_timesteps = data['timesteps']
data_results = data['results']
if len(result_per_timestep.keys()) == 0:
for t in range(len(data_timesteps)):
data_timestep = data_timesteps[t]
data_result = data_results[t]
# Store mean of 10 evaluations for each run.
result_per_timestep[data_timestep] = np.mean(data_result)
else:
for t in range(len(data_timesteps)):
data_timestep = data_timesteps[t]
data_result = data_results[t]
if data_timestep not in result_per_timestep.keys():
print("Inconsistent time step error")
exit()
result_per_timestep[data_timestep] = np.append(result_per_timestep[data_timestep], np.mean(data_result))
# Draw graph
fig, ax = plt.subplots()
clrs = sns.color_palette("husl", 1)
with sns.axes_style("darkgrid"):
timesteps = list(result_per_timestep.keys())
nrow = len(timesteps)
ncol = args.n_runs
results = np.zeros((nrow, ncol))
for i in range(nrow):
results[i][:] = result_per_timestep[timesteps[i]]
mean_results = np.mean(results, axis = 1)
std_results = np.std(results, axis = 1)
mean_spline = make_interp_spline(timesteps, mean_results)
std_spline = make_interp_spline(timesteps, std_results)
n_timesteps = np.linspace(0, np.max(timesteps), 500)
n_mean_results = mean_spline(n_timesteps)
n_std_results = std_spline(n_timesteps)
ax.plot(n_timesteps, n_mean_results, label="Hyperparameter " + str(args.parameter_id), c = clrs[0])
ax.fill_between(n_timesteps, n_mean_results - n_std_results, n_mean_results + n_std_results, alpha=0.3, facecolor=clrs[0])
ax.legend()
#plt.show()
plt.savefig(eval_log_dir + 'learning_graph.png')