forked from DLR-RM/rl-baselines3-zoo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
enjoy.py
310 lines (265 loc) · 10 KB
/
enjoy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import argparse
import glob
import importlib
import os
import sys
import numpy as np
import torch as th
import yaml
from stable_baselines3.common.utils import set_random_seed
import utils.import_envs # noqa: F401 pylint: disable=unused-import
from utils import ALGOS, create_test_env, get_latest_run_id, get_saved_hyperparams
from utils.exp_manager import ExperimentManager
from utils.utils import StoreDict
def main(): # noqa: C901
parser = argparse.ArgumentParser()
parser.add_argument("--env", help="environment ID", type=str, default="CartPole-v1")
parser.add_argument(
"-f", "--folder", help="Log folder", type=str, default="rl-trained-agents"
)
parser.add_argument(
"--algo",
help="RL Algorithm",
default="ppo",
type=str,
required=False,
choices=list(ALGOS.keys()),
)
parser.add_argument(
"-n", "--n-timesteps", help="number of timesteps", default=1000, type=int
)
parser.add_argument(
"--num-threads",
help="Number of threads for PyTorch (-1 to use default)",
default=-1,
type=int,
)
parser.add_argument("--n-envs", help="number of environments", default=1, type=int)
parser.add_argument(
"--exp-id",
help="Experiment ID (default: 0: latest, -1: no exp folder)",
default=0,
type=int,
)
parser.add_argument(
"--verbose", help="Verbose mode (0: no output, 1: INFO)", default=1, type=int
)
parser.add_argument(
"--no-render",
action="store_true",
default=False,
help="Do not render the environment (useful for tests)",
)
parser.add_argument(
"--deterministic",
action="store_true",
default=False,
help="Use deterministic actions",
)
parser.add_argument(
"--load-best",
action="store_true",
default=False,
help="Load best model instead of last model if available",
)
parser.add_argument(
"--load-checkpoint",
type=int,
help="Load checkpoint instead of last model if available, "
"you must pass the number of timesteps corresponding to it",
)
parser.add_argument(
"--load-last-checkpoint",
action="store_true",
default=False,
help="Load last checkpoint instead of last model if available",
)
parser.add_argument(
"--stochastic",
action="store_true",
default=False,
help="Use stochastic actions",
)
parser.add_argument(
"--norm-reward",
action="store_true",
default=False,
help="Normalize reward if applicable (trained with VecNormalize)",
)
parser.add_argument("--seed", help="Random generator seed", type=int, default=0)
parser.add_argument(
"--reward-log", help="Where to log reward", default="", type=str
)
parser.add_argument(
"--gym-packages",
type=str,
nargs="+",
default=[],
help="Additional external Gym environment package modules to import (e.g. gym_minigrid)",
)
parser.add_argument(
"--env-kwargs",
type=str,
nargs="+",
action=StoreDict,
help="Optional keyword argument to pass to the env constructor",
)
args = parser.parse_args()
# Going through custom gym packages to let them register in the global registory
for env_module in args.gym_packages:
importlib.import_module(env_module)
env_id = args.env
algo = args.algo
folder = args.folder
if args.exp_id == 0:
args.exp_id = get_latest_run_id(os.path.join(folder, algo), env_id)
print(f"Loading latest experiment, id={args.exp_id}")
# Sanity checks
if args.exp_id > 0:
log_path = os.path.join(folder, algo, f"{env_id}_{args.exp_id}")
else:
log_path = os.path.join(folder, algo)
assert os.path.isdir(log_path), f"The {log_path} folder was not found"
found = False
for ext in ["zip"]:
model_path = os.path.join(log_path, f"{env_id}.{ext}")
found = os.path.isfile(model_path)
if found:
break
if args.load_best:
model_path = os.path.join(log_path, "best_model.zip")
found = os.path.isfile(model_path)
if args.load_checkpoint is not None:
model_path = os.path.join(
log_path, f"rl_model_{args.load_checkpoint}_steps.zip"
)
found = os.path.isfile(model_path)
if args.load_last_checkpoint:
checkpoints = glob.glob(os.path.join(log_path, "rl_model_*_steps.zip"))
if len(checkpoints) == 0:
raise ValueError(
f"No checkpoint found for {algo} on {env_id}, path: {log_path}"
)
def step_count(checkpoint_path: str) -> int:
# path follow the pattern "rl_model_*_steps.zip", we count from the back to ignore any other _ in the path
return int(checkpoint_path.split("_")[-2])
checkpoints = sorted(checkpoints, key=step_count)
model_path = checkpoints[-1]
found = True
if not found:
raise ValueError(f"No model found for {algo} on {env_id}, path: {model_path}")
print(f"Loading {model_path}")
# Off-policy algorithm only support one env for now
off_policy_algos = ["qrdqn", "dqn", "ddpg", "sac", "her", "td3", "tqc"]
if algo in off_policy_algos:
args.n_envs = 1
set_random_seed(args.seed)
if args.num_threads > 0:
if args.verbose > 1:
print(f"Setting torch.num_threads to {args.num_threads}")
th.set_num_threads(args.num_threads)
is_atari = ExperimentManager.is_atari(env_id)
stats_path = os.path.join(log_path, env_id)
hyperparams, stats_path = get_saved_hyperparams(
stats_path, norm_reward=args.norm_reward, test_mode=True
)
# load env_kwargs if existing
env_kwargs = {}
args_path = os.path.join(log_path, env_id, "args.yml")
if os.path.isfile(args_path):
with open(args_path, "r") as f:
loaded_args = yaml.load(
f, Loader=yaml.UnsafeLoader
) # pytype: disable=module-attr
if loaded_args["env_kwargs"] is not None:
env_kwargs = loaded_args["env_kwargs"]
# overwrite with command line arguments
if args.env_kwargs is not None:
env_kwargs.update(args.env_kwargs)
log_dir = args.reward_log if args.reward_log != "" else None
env = create_test_env(
env_id,
n_envs=args.n_envs,
stats_path=stats_path,
seed=args.seed,
log_dir=log_dir,
should_render=not args.no_render,
hyperparams=hyperparams,
env_kwargs=env_kwargs,
)
kwargs = dict(seed=args.seed)
if algo in off_policy_algos:
# Dummy buffer size as we don't need memory to enjoy the trained agent
kwargs.update(dict(buffer_size=1))
# Check if we are running python 3.8+
# we need to patch saved model under python 3.6/3.7 to load them
newer_python_version = sys.version_info.major == 3 and sys.version_info.minor >= 8
custom_objects = {}
if newer_python_version:
custom_objects = {
"learning_rate": 0.0,
"lr_schedule": lambda _: 0.0,
"clip_range": lambda _: 0.0,
}
model = ALGOS[algo].load(
model_path, env=env, custom_objects=custom_objects, **kwargs
)
obs = env.reset()
# Deterministic by default except for atari games
stochastic = args.stochastic or is_atari and not args.deterministic
deterministic = not stochastic
state = None
episode_reward = 0.0
episode_rewards, episode_lengths = [], []
ep_len = 0
# For HER, monitor success rate
successes = []
try:
for _ in range(args.n_timesteps):
action, state = model.predict(obs, state=state, deterministic=deterministic)
obs, reward, done, infos = env.step(action)
if not args.no_render:
env.render("human")
episode_reward += reward[0]
ep_len += 1
if args.n_envs == 1:
# For atari the return reward is not the atari score
# so we have to get it from the infos dict
if is_atari and infos is not None and args.verbose >= 1:
episode_infos = infos[0].get("episode")
if episode_infos is not None:
print(f"Atari Episode Score: {episode_infos['r']:.2f}")
print("Atari Episode Length", episode_infos["l"])
if done and not is_atari and args.verbose > 0:
# NOTE: for env using VecNormalize, the mean reward
# is a normalized reward when `--norm_reward` flag is passed
print(f"Episode Reward: {episode_reward:.2f}")
print("Episode Length", ep_len)
episode_rewards.append(episode_reward)
episode_lengths.append(ep_len)
episode_reward = 0.0
ep_len = 0
state = None
# Reset also when the goal is achieved when using HER
if done and infos[0].get("is_success") is not None:
if args.verbose > 1:
print("Success?", infos[0].get("is_success", False))
if infos[0].get("is_success") is not None:
successes.append(infos[0].get("is_success", False))
episode_reward, ep_len = 0.0, 0
except KeyboardInterrupt:
pass
if args.verbose > 0 and len(successes) > 0:
print(f"Success rate: {100 * np.mean(successes):.2f}%")
if args.verbose > 0 and len(episode_rewards) > 0:
print(f"{len(episode_rewards)} Episodes")
print(
f"Mean reward: {np.mean(episode_rewards):.2f} +/- {np.std(episode_rewards):.2f}"
)
if args.verbose > 0 and len(episode_lengths) > 0:
print(
f"Mean episode length: {np.mean(episode_lengths):.2f} +/- {np.std(episode_lengths):.2f}"
)
env.close()
if __name__ == "__main__":
main()