-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainNN.py
131 lines (114 loc) · 4.2 KB
/
trainNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import torch
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.autograd import Variable
import aipy as a
import pylab as pl
from glob import glob
import numpy as n
# Hyper Parameters
num_epochs = 5
batch_size = 100
learning_rate = 0.001
def loadAipyData():
HERAlist = glob('/Users/josh/Desktop/HERA/data/*A')
HERAdata = []
times = []
for l in ['9_10']: #,'31_105','10_105','9_31','9_105','10_31']:
data = []
for k in HERAlist:
uvHERA = a.miriad.UV(k)
a.scripting.uv_selector(uvHERA, l, 'xx')
for p,d,f in uvHERA.all(raw=True):
data.append(d)
times.append(uvHERA['lst'])
if l == '9_10':
HERAdata = [data]
else:
HERAdata.append(data)
print n.shape(HERAdata)
HERAdata = n.array(HERAdata)
times = n.array(times)
return HERAdata,times
# MNIST Dataset
train_dataset = dsets.MNIST(root='../data/',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = dsets.MNIST(root='../data/',
train=False,
transform=transforms.ToTensor())
# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
# CNN Model (1 conv layer)
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(1, 16*4, kernel_size=(193,769), padding=0),
nn.ReLU())
#nn.MaxPool2d(5))
#nn.BatchNorm2d(16),
# nn.ReLU(),
# nn.MaxPool2d(2))
# self.layer2 = nn.Sequential(
# nn.Conv2d(16, 32, kernel_size=5, padding=2),
# nn.BatchNorm2d(32),
# nn.ReLU(),
# nn.MaxPool2d(2))
self.fc = nn.Linear(1024*256, 2) ##size of input images *2
def forward(self, x):
out = self.layer1(x)
print out.size()
# out = self.layer2(out)
out = out.view(-1,1024)
out = self.fc(out)
return out
cnn = CNN()
# Loss and Optimizer
#criterion = nn.CrossEntropyLoss(weight=None,)
optimizer = torch.optim.Adam(cnn.parameters(), lr=learning_rate)
data,time = loadAipyData()
mask = n.loadtxt('trainMask_severalBlines.txt')[0:256,:]
data = n.nan_to_num(data.reshape(-1,1024))
data = n.array(n.abs(data[0:256,:]))
rfiFlags = Variable(torch.Tensor(mask).int())
criterion = nn.CrossEntropyLoss(weight=None,size_average=True)
# Train the Model
for epoch in range(num_epochs):
#for i, (images, labels) in enumerate(train_loader):
# print images.size()
# print labels.size()
vis = Variable(torch.Tensor(data.reshape(1,1,-1,1024)))
# rfiFlags = Variable(torch.Tensor(mask))
# Forward + Backward + Optimize
optimizer.zero_grad()
outputs = cnn(vis)
#outputs = outputs.transpose(0,1)
#outputs = outputs.contiguous().view(1,-1).int()
#rfiFlags = rfiFlags.view(1,-1)
loss = criterion(outputs, rfiFlags)
# loss.backward()
# optimizer.step()
# if (i+1) % 100 == 0:
# print ('Epoch [%d/%d], Iter [%d/%d] Loss: %.4f'
# %(epoch+1, num_epochs, i+1, len(train_dataset)//batch_size, loss.data[0]))
# Test the Model
cnn.eval() # Change model to 'eval' mode (BN uses moving mean/var).
correct = 0
total = 0
for images, labels in test_loader:
images = Variable(images)
outputs = cnn(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print('Test Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
# Save the Trained Model
torch.save(cnn.state_dict(), 'cnn.pkl')