-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDeepHTLV.py
250 lines (197 loc) · 8.58 KB
/
DeepHTLV.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
from __future__ import print_function, division
import numpy as np
import h5py
import scipy.io
import random
import sys,os
import itertools
import numbers
from collections import Counter
from warnings import warn
from abc import ABCMeta, abstractmethod
from sklearn.model_selection import train_test_split, StratifiedKFold
from sklearn.metrics import roc_auc_score, average_precision_score
from sklearn.utils import shuffle
import matplotlib.pyplot
import tensorflow as tf
# The below is necessary for starting Numpy generated random numbers
# in a well-defined initial state.
np.random.seed(1337)
# The below is necessary for starting core Python generated random numbers
# in a well-defined state.
#python_random.seed(1337)
# The below set_seed() will make random number generation
# in the TensorFlow backend have a well-defined initial state.
# For further details, see:
# https://www.tensorflow.org/api_docs/python/tf/random/set_seed
#tf.random.set_seed(1337)
#older version of tensorflow
tf.set_random_seed(1337)
import os
num_threads = 4
# Maximum number of threads to use for OpenMP parallel regions.
os.environ["OMP_NUM_THREADS"] = "4"
# Without setting below 2 environment variables, it didn't work for me. Thanks to @cjw85
os.environ["TF_NUM_INTRAOP_THREADS"] = "4"
os.environ["TF_NUM_INTEROP_THREADS"] = "4"
tf.config.threading.set_inter_op_parallelism_threads(
num_threads
)
tf.config.threading.set_intra_op_parallelism_threads(
num_threads
)
tf.config.set_soft_device_placement(True)
# gpus = tf.config.experimental.list_physical_devices(device_type='GPU')
# for gpu in gpus:
# tf.config.experimental.set_memory_growth(gpu, True)
os.environ['CUDA_VISIBLE_DEVICES'] = "2,3,4"
from keras.optimizers import RMSprop, SGD
from keras.models import Sequential, model_from_yaml
from keras.layers.core import Dense, Dropout, Activation, Flatten
import keras.layers.core as core
from keras.layers import Dense, Dropout, Embedding, LSTM, Input, merge, multiply, Reshape
from keras.layers.convolutional import Convolution1D, MaxPooling1D
from keras.layers.wrappers import Bidirectional
from keras.constraints import maxnorm
from keras.layers.recurrent import LSTM, GRU
from keras.callbacks import ModelCheckpoint, EarlyStopping
from keras.layers import Embedding
from sklearn.metrics import fbeta_score, roc_curve, auc, roc_auc_score, average_precision_score, precision_recall_curve
import matplotlib.pyplot as plt
from keras.regularizers import l2, l1, l1_l2
from keras.models import Model
from keras import backend as K
from keras.engine.topology import Layer
from keras import activations, initializers, regularizers, constraints
from keras.engine import InputSpec
from keras.layers import concatenate
class Attention(Layer):
def __init__(self,hidden,init='glorot_uniform',activation='linear',W_regularizer=None,b_regularizer=None,W_constraint=None,**kwargs):
self.init = initializers.get(init)
self.activation = activations.get(activation)
self.W_regularizer = regularizers.get(W_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.W_constraint = constraints.get(W_constraint)
self.hidden=hidden
super(Attention, self).__init__(**kwargs)
def build(self, input_shape):
input_dim = input_shape[-1]
self.input_length = input_shape[1]
self.W0 = self.add_weight(name ='{}_W1'.format(self.name), shape = (input_dim, self.hidden), initializer = 'glorot_uniform', trainable=True) # Keras 2 API
self.W = self.add_weight( name ='{}_W'.format(self.name), shape = (self.hidden, 1), initializer = 'glorot_uniform', trainable=True)
self.b0 = K.zeros((self.hidden,), name='{}_b0'.format(self.name))
self.b = K.zeros((1,), name='{}_b'.format(self.name))
self.trainable_weights = [self.W0,self.W,self.b,self.b0]
self.regularizers = []
if self.W_regularizer:
self.W_regularizer.set_param(self.W)
self.regularizers.append(self.W_regularizer)
if self.b_regularizer:
self.b_regularizer.set_param(self.b)
self.regularizers.append(self.b_regularizer)
self.constraints = {}
if self.W_constraint:
self.constraints[self.W0] = self.W_constraint
self.constraints[self.W] = self.W_constraint
super(Attention, self).build(input_shape)
def call(self,x,mask=None):
attmap = self.activation(K.dot(x, self.W0)+self.b0)
attmap = K.dot(attmap, self.W) + self.b
attmap = K.reshape(attmap, (-1, self.input_length)) # Softmax needs one dimension
attmap = K.softmax(attmap)
dense_representation = K.batch_dot(attmap, x, axes=(1, 1))
out = K.concatenate([dense_representation, attmap]) # Output the attention maps but do not pass it to the next layer by DIY flatten layer
return out
def compute_output_shape(self, input_shape):
return (input_shape[0], input_shape[-1] + input_shape[1])
def get_config(self):
config = {'init': 'glorot_uniform',
'activation': self.activation.__name__,
'W_constraint': self.W_constraint.get_config() if self.W_constraint else None,
'W_regularizer': self.W_regularizer.get_config() if self.W_regularizer else None,
'b_regularizer': self.b_regularizer.get_config() if self.b_regularizer else None,
'hidden': self.hidden if self.hidden else None}
base_config = super(Attention, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
class attention_flatten(Layer): # Based on the source code of Keras flatten
def __init__(self, keep_dim, **kwargs):
self.keep_dim = keep_dim
super(attention_flatten, self).__init__(**kwargs)
def compute_output_shape(self, input_shape):
if not all(input_shape[1:]):
raise Exception('The shape of the input to "Flatten" '
'is not fully defined '
'(got ' + str(input_shape[1:]) + '. '
'Make sure to pass a complete "input_shape" '
'or "batch_input_shape" argument to the first '
'layer in your model.')
return (input_shape[0], self.keep_dim) # Remove the attention map
def call(self, x, mask=None):
x=x[:,:self.keep_dim]
return K.batch_flatten(x)
def build_model():
print('building model')
seq_input_shape = (1000,4)
nb_filter = 256
filter_length = 9
attentionhidden = 256
seq_input = Input(shape = seq_input_shape, name = 'seq_input')
convul1 = Convolution1D(filters = nb_filter,
kernel_size = filter_length,
padding = 'valid',
activation = 'relu',
kernel_constraint = maxnorm(3),
subsample_length = 1)
pool_ma1 = MaxPooling1D(pool_size = 3)
dropout1 = Dropout(0.5977908689086315)
dropout2 = Dropout(0.50131233477637737)
decoder = Attention(hidden = attentionhidden, activation = 'linear')
dense1 = Dense(1)
dense2 = Dense(1)
output_1 = pool_ma1(convul1(seq_input))
output_2 = dropout1(output_1)
att_decoder = decoder(output_2)
output_3 = attention_flatten(output_2._keras_shape[2])(att_decoder)
output_4 = dense1(dropout2(Flatten()(output_2)))
all_outp = concatenate([output_3, output_4])
output_5 = dense2(all_outp)
output_f = Activation('sigmoid')(output_5)
model = Model(inputs = seq_input, outputs = output_f)
model.compile(loss = 'binary_crossentropy', optimizer = 'nadam', metrics = ['accuracy'])
print (model.summary())
return model
def data_processing():
x_visdb = np.load('data/x_VISDB_fulldata.npy')
y_visdb = np.load('data/y_VISDB_fulldata.npy')
###split 9:1
trainx, valx, trainy, valy = train_test_split(x_visdb, y_visdb, test_size = 0.1, stratify=y_visdb, random_state=42)
###test 1:1
neg_val = np.where(valy == 0)
pos_val = np.where(valy == 1)
xval_positive = valx[pos_val]
yval_positive = valy[pos_val]
xval_negative = valx[neg_val]
yval_negative = valy[neg_val]
np.random.seed(42)
permutation = np.random.permutation(xval_negative.shape[0])
xval_negative_1 = xval_negative[permutation[:xval_positive.shape[0]], :, :]
yval_negative_1 = yval_negative[permutation[:xval_positive.shape[0]]]
valx = np.concatenate((xval_positive, xval_negative_1), axis=0)
valy = np.concatenate((yval_positive, yval_negative_1), axis=0)
valx2, valy2 = shuffle(valx, valy, random_state=42)
return trainx, trainy, valx2, valy2
def run_model():
trainx, trainy, valx, valy = data_processing()
model = build_model()
model.load_weights('model/Final_model.h5')
print('testing')
y_pred = model.predict(valx, verbose = 1)
auroc = roc_auc_score(valy, y_pred)
aupr = average_precision_score(valy, y_pred)
np.save('data/y_pred.npy', y_pred)
np.save('data/valy.npy', valy)
print('auroc = ', auroc)
print('aupr = ', aupr)
if __name__ == '__main__':
build_model()
run_model()