-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
76 lines (56 loc) · 2.61 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import streamlit as st
import os
from langchain_groq import ChatGroq
from langchain_openai import OpenAIEmbeddings
from langchain_community.embeddings import OllamaEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from langchain.chains import create_retrieval_chain
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFDirectoryLoader
import openai
from dotenv import load_dotenv
load_dotenv()
## load the GROQ API Key
os.environ['OPENAI_API_KEY']=os.getenv("OPENAI_API_KEY")
os.environ['GROQ_API_KEY']=os.getenv("GROQ_API_KEY")
groq_api_key=os.getenv("GROQ_API_KEY")
llm=ChatGroq(groq_api_key=groq_api_key,model_name="Llama3-8b-8192")
prompt=ChatPromptTemplate.from_template(
"""
Answer the questions based on the provided context only.
Please provide the most accurate respone based on the question
<context>
{context}
<context>
Question:{input}
"""
)
def create_vector_embedding():
if "vectors" not in st.session_state:
st.session_state.embeddings=OpenAIEmbeddings()
st.session_state.loader=PyPDFDirectoryLoader("research_papers") ## Data Ingestion step
st.session_state.docs=st.session_state.loader.load() ## Document Loading
st.session_state.text_splitter=RecursiveCharacterTextSplitter(chunk_size=1000,chunk_overlap=200)
st.session_state.final_documents=st.session_state.text_splitter.split_documents(st.session_state.docs[:50])
st.session_state.vectors=FAISS.from_documents(st.session_state.final_documents,st.session_state.embeddings)
st.title("RAG Document Q&A With Groq And Lama3")
user_prompt=st.text_input("Enter your query from the research paper")
if st.button("Document Embedding"):
create_vector_embedding()
st.write("Vector Database is ready")
import time
if user_prompt:
document_chain=create_stuff_documents_chain(llm,prompt)
retriever=st.session_state.vectors.as_retriever()
retrieval_chain=create_retrieval_chain(retriever,document_chain)
start=time.process_time()
response=retrieval_chain.invoke({'input':user_prompt})
print(f"Response time :{time.process_time()-start}")
st.write(response['answer'])
## With a streamlit expander
with st.expander("Document similarity Search"):
for i,doc in enumerate(response['context']):
st.write(doc.page_content)
st.write('------------------------')