-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
54 lines (41 loc) · 1.42 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import numpy as np
from flask import Flask, request, jsonify, render_template
from sklearn.linear_model import _base
from DeepPurpose import utils
from DeepPurpose import DTI as models
import pickle
app = Flask(__name__)
#model = pickle.load(open('model.pkl', 'rb'))
@app.route('/')
def home():
return render_template('index.html')
@app.route('/predict',methods=['POST'])
def predict():
'''
For rendering results on HTML GUI
'''
drug_encoding, target_encoding = 'Transformer', 'CNN'
features = [[x] for x in request.form.values()]
X_drug = features[0]
X_target = features[1]
y = [1]
X_pred = utils.data_process(X_drug, X_target, y,
drug_encoding, target_encoding,
split_method='no_split')
dti_model = models.model_pretrained(path_dir = 'DTI_Model')
y_pred = dti_model.predict(X_pred)
#final_features = [np.array(int_features)]
#prediction = model.predict(final_features)
output = str(y_pred)
return render_template('index.html', prediction_text='Binding Affinity = {}'.format(output))
@app.route('/predict_api',methods=['POST'])
def predict_api():
'''
For direct API calls trought request
'''
data = request.get_json(force=True)
prediction = model.predict([np.array(list(data.values()))])
output = prediction[0]
return jsonify(output)
if __name__ == "__main__":
app.run(debug=True)