-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodel.py
182 lines (148 loc) · 5.66 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parallel import DistributedDataParallel
import torchvision.models as tvm
from dataset import MAX_CHS, Mode
class STN(nn.Module):
def __init__(self):
super().__init__()
# Spatial transformer localization-network
self.localization = nn.Sequential(
nn.Conv2d(1, 8, kernel_size=7),
nn.MaxPool2d(2, stride=2),
nn.ReLU(True),
nn.Conv2d(8, 10, kernel_size=5),
nn.MaxPool2d(2, stride=2),
nn.ReLU(True)
)
self.mid_dim = 10 * 60 * 60
# Regressor for the 3 * 2 affine matrix
self.fc_loc = nn.Sequential(
nn.Linear(self.mid_dim, 32),
nn.ReLU(True),
nn.Linear(32, 3 * 2)
)
# Initialize the weights/bias with identity transformation
self.fc_loc[2].weight.data.zero_()
self.fc_loc[2].bias.data.copy_(torch.tensor([1, 0, 0, 0, 1, 0], dtype=torch.float))
# Spatial transformer network forward function
def forward(self, x):
xs = self.localization(x)
xs = xs.view(-1, self.mid_dim)
theta = self.fc_loc(xs)
theta = theta.view(-1, 2, 3)
grid = F.affine_grid(theta, x.size())
x = F.grid_sample(x, grid)
return x
class SmallNet(nn.Module):
def __init__(self, out_dim):
super().__init__()
self.conv = nn.Sequential(
nn.Conv2d(1, 10, kernel_size=5, stride=2),
nn.MaxPool2d(2, stride=2),
nn.ReLU(True),
nn.Conv2d(10, 20, kernel_size=5, stride=2),
nn.Dropout2d(),
nn.MaxPool2d(2, stride=2),
nn.ReLU(True),
)
self.mid_dim = 20 * 15 * 15
self.fc = nn.Sequential(
nn.Linear(self.mid_dim, 100),
nn.Linear(100, out_dim)
)
def forward(self, x):
# Perform the usual forward pass
x = self.conv(x)
x = x.view(-1, self.mid_dim)
x = self.fc(x)
return x
class WindowOptimizer(nn.Module):
def __init__(self):
super().__init__()
self.net = SmallNet(out_dim=2)
self.tanh = nn.Hardtanh()
def forward(self, x):
k, c = self.net(x).unsqueeze(2).unsqueeze(3).split(1, dim=1)
x = torch.mul(x, k).add(c)
x = self.tanh(x)
return x
class CustomBlock(nn.Module):
def __init__(self, blocks=3, hidden=512):
super().__init__()
self.blocks = nn.ModuleList([
nn.Sequential(OrderedDict([
('bn0', nn.BatchNorm1d(hidden)),
('fc0', nn.Linear(hidden, hidden)),
('rl0', nn.ReLU()),
#('do0', nn.Dropout(0.25)),
]))
for _ in range(blocks)
])
def forward(self, x):
for i, block in enumerate(self.blocks):
y = block(x)
if i == 1:
F.dropout(y, p=0.25, training=self.training, inplace=True)
x = y + x
return x
class Network(nn.Module):
def __init__(self, out_dim=14, mode=Mode.PER_IMAGE):
super().__init__()
#self.stn = STN()
#self.winopt = WindowOptimizer()
self.mode = mode
#self.main = tvm.resnext101_32x8d(pretrained=True)
#self.main.conv1 = nn.Conv2d(20, 64, kernel_size=7, stride=2, padding=3, bias=False)
#self.main.fc = nn.Linear(self.main.fc.in_features, out_dim)
num_hidden = 256
#self.main = tvm.densenet121(pretrained=False, drop_rate=0.5, num_classes=self.num_hidden)
self.main = tvm.densenet169(pretrained=False, drop_rate=0.25, num_classes=num_hidden)
self.main.features.conv0 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=True)
#self.custom = nn.ModuleList([
# nn.Sequential(OrderedDict([
# ('cb0', CustomBlock(hidden=num_hidden)),
# #('do0', nn.Dropout(0.5)),
# ('fc1', nn.Linear(num_hidden, 1)),
# ]))
# for _ in range(out_dim)
#])
self.custom = nn.Sequential(OrderedDict([
#('ln0', nn.LayerNorm(num_hidden, elementwise_affine=True)),
('cb0', CustomBlock(blocks=3, hidden=num_hidden)),
('fc0', nn.Linear(num_hidden, out_dim)),
]))
def to_distributed(self, device):
#modules = self.main.features.__dict__.get('_modules')
#
#def closure(name):
# modules[name] = DistributedDataParallel(modules[name], device_ids=[device], output_device=device,
# find_unused_parameters=True)
#
#for name in modules.keys():
# if 'denseblock' in name: # and name != 'denseblock1':
# closure(name)
# if 'transition' in name: # and name != 'transition1':
# closure(name)
self.main = DistributedDataParallel(self.main, device_ids=[device], output_device=device,
find_unused_parameters=True)
def forward(self, x, num_chs):
if self.mode == Mode.PER_IMAGE:
z = self.main(x)
else:
y = [x[b, :c, :, :] for b, c in enumerate(num_chs)]
y = torch.cat(y).unsqueeze(dim=1)
y = self.main(y)
y = F.softmax(y, dim=1)
z = torch.split(y, num_chs.tolist(), dim=0)
z = torch.cat([t.mean(dim=0, keepdim=True) for t in z])
# custom
#xs = [m(z) for m in self.custom]
#x = torch.cat(xs, dim=1)
x = self.custom(z)
return x
if __name__ == "__main__":
m = Network()
m.to_distributed("cuda:0")