-
Notifications
You must be signed in to change notification settings - Fork 7
/
animate_region_growing.py
431 lines (400 loc) · 13.9 KB
/
animate_region_growing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import numpy
import h5py
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
import sys
from class_util import classes, class_to_id, class_to_color_rgb
import itertools
import math
import networkx as nx
import time
import matplotlib.pyplot as plt
import scipy.special
from OpenGL.GL import *
from OpenGL.GLUT import *
from OpenGL.GLU import *
from PIL import Image
from PIL import ImageOps
from PIL import ImageDraw
from PIL import ImageFont
from learn_region_grow_util import LrgNet
numpy.random.seed(0)
NUM_INLIER_POINT = 512
NUM_NEIGHBOR_POINT = 512
FEATURE_SIZE = 13
TEST_AREAS = [1,2,3,4,5,6,'scannet']
resolution = 0.1
completion_threshold = 0.5
classification_threshold = 0.5
cluster_threshold = 10
AREA = 5
ROOM = 44
color_sample_state = numpy.random.RandomState(0)
instance_color_id = color_sample_state.randint(0,255,(20,3))
for i in range(len(sys.argv)):
if sys.argv[i]=='--area':
AREA = int(sys.argv[i+1])
if sys.argv[i]=='--room':
ROOM = int(sys.argv[i+1])
cameraX = 9.42495995258856
cameraY = 9.381724865127635
cameraZ = 4.651620026309769
centerX=0
centerY=0
centerZ=0
upX=0
upY=0
upZ=1
mouseIndex = 0
previousX = 0
previousY = 0
scrollSpeed = 1.1
fov = 70
img_id = 0
def loadFromH5(filename, load_labels=True):
f = h5py.File(filename,'r')
all_points = f['points'][:]
count_room = f['count_room'][:]
tmp_points = []
idp = 0
for i in range(len(count_room)):
tmp_points.append(all_points[idp:idp+count_room[i], :])
idp += count_room[i]
f.close()
room = []
labels = []
class_labels = []
if load_labels:
for i in range(len(tmp_points)):
room.append(tmp_points[i][:,:-2])
labels.append(tmp_points[i][:,-2].astype(int))
class_labels.append(tmp_points[i][:,-1].astype(int))
return room, labels, class_labels
else:
return tmp_points
def savePCD(filename,points):
if len(points)==0:
return
f = open(filename,"w")
l = len(points)
header = """# .PCD v0.7 - Point Cloud Data file format
VERSION 0.7
FIELDS x y z rgb
SIZE 4 4 4 4
TYPE F F F I
COUNT 1 1 1 1
WIDTH %d
HEIGHT 1
VIEWPOINT 0 0 0 1 0 0 0
POINTS %d
DATA ascii
""" % (l,l)
f.write(header)
for p in points:
rgb = (int(p[3]) << 16) | (int(p[4]) << 8) | int(p[5])
f.write("%f %f %f %d\n"%(p[0],p[1],p[2],rgb))
f.close()
print('Saved %d points to %s' % (l,filename))
all_points,all_obj_id,all_cls_id = loadFromH5('data/s3dis_area%s.h5' % AREA)
room_id = ROOM
unequalized_points = all_points[room_id]
obj_id = all_obj_id[room_id]
cls_id = all_cls_id[room_id]
#equalize resolution
equalized_idx = []
unequalized_idx = []
equalized_map = {}
normal_grid = {}
for i in range(len(unequalized_points)):
k = tuple(numpy.round(unequalized_points[i,:3]/resolution).astype(int))
if not k in equalized_map:
equalized_map[k] = len(equalized_idx)
equalized_idx.append(i)
unequalized_idx.append(equalized_map[k])
if not k in normal_grid:
normal_grid[k] = []
normal_grid[k].append(i)
points = unequalized_points[equalized_idx]
obj_id = obj_id[equalized_idx]
cls_id = cls_id[equalized_idx]
xyz = points[:,:3]
rgb = points[:,3:6]
room_coordinates = (xyz - xyz.min(axis=0)) / (xyz.max(axis=0) - xyz.min(axis=0))
#compute normals
normals = []
curvatures = []
for i in range(len(points)):
k = tuple(numpy.round(points[i,:3]/resolution).astype(int))
neighbors = []
for offset in itertools.product([-1,0,1],[-1,0,1],[-1,0,1]):
kk = (k[0]+offset[0], k[1]+offset[1], k[2]+offset[2])
if kk in normal_grid:
neighbors.extend(normal_grid[kk])
accA = numpy.zeros((3,3))
accB = numpy.zeros(3)
for n in neighbors:
p = unequalized_points[n,:3]
accA += numpy.outer(p,p)
accB += p
cov = accA / len(neighbors) - numpy.outer(accB, accB) / len(neighbors)**2
U,S,V = numpy.linalg.svd(cov)
normals.append(numpy.fabs(V[2]))
curvature = S[2] / (S[0] + S[1] + S[2])
curvatures.append(numpy.fabs(curvature))
curvatures = numpy.array(curvatures)
curvatures = curvatures/curvatures.max()
normals = numpy.array(normals)
points = numpy.hstack((xyz, room_coordinates, rgb, normals, curvatures.reshape(-1,1))).astype(numpy.float32)
result_points = unequalized_points.copy()
result_points[:,3:6] = (result_points[:,3:6]+0.5)*255
viz_points = []
instance_color = numpy.ones((len(points), 3), dtype=int)*100
print('points',points.shape)
def displayFun():
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT )
glMatrixMode(GL_MODELVIEW)
glLoadIdentity()
gluLookAt(cameraX,cameraY,cameraZ,centerX,centerY,centerZ,upX,upY,upZ)
glPointSize(5.0)
glBegin(GL_POINTS)
for n in range(len(viz_points)):
glColor3ub(int(viz_points[n][3]),int(viz_points[n][4]),int(viz_points[n][5]))
glVertex3d(viz_points[n][0],viz_points[n][1],viz_points[n][2])
for n in range(len(result_points)):
glColor3ub(int(result_points[n][3]),int(result_points[n][4]),int(result_points[n][5]))
glVertex3d(result_points[n][0],result_points[n][1],result_points[n][2])
glEnd()
glFlush()
glutSwapBuffers()
#takes mouse click/wheel input to change the view angle
def mouseFun(button,state,x,y):
global cameraX,cameraY,cameraZ,previousX,previousY
if button==3:
cameraX /= scrollSpeed
cameraY /= scrollSpeed
cameraZ /= scrollSpeed
elif button==4:
cameraX *= scrollSpeed
cameraY *= scrollSpeed
cameraZ *= scrollSpeed
elif button==GLUT_LEFT_BUTTON and state == GLUT_DOWN:
mouseIndex = button
previousX = x
previousY = y
glutPostRedisplay()
#takes mouse drag input to change the view angle
def motionFun(x,y):
global cameraX,cameraY,cameraZ,previousX,previousY
if mouseIndex == GLUT_LEFT_BUTTON:
rho = math.sqrt(cameraX*cameraX+cameraY*cameraY)
xstep = cameraY / rho
ystep = -cameraX / rho
cameraX += 0.05 * (x-previousX) * xstep
cameraY += 0.05 * (x-previousX) * ystep
cameraZ += 0.05 * (y-previousY)
previousX = x
previousY = y
glutPostRedisplay()
def keyFun(key,x,y):
global cameraX,cameraY,cameraZ
if key==b' ':
cameraX=5
cameraY=5
cameraZ=5
glutPostRedisplay()
elif key==b'w':
cameraX /= scrollSpeed
cameraY /= scrollSpeed
cameraZ /= scrollSpeed
glutPostRedisplay()
elif key=='s':
cameraX *= scrollSpeed
cameraY *= scrollSpeed
cameraZ *= scrollSpeed
glutPostRedisplay()
elif key=='c':
print(cameraX,cameraY,cameraZ)
def reshapeFun(w, h):
glViewport (0, 0, w, h)
width = height = 1000
glutInit()
glutInitWindowSize(width, height)
glutCreateWindow("ANIMATE")
#glutHideWindow()
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB)
glutDisplayFunc(displayFun)
glutReshapeFunc(reshapeFun)
glutKeyboardFunc(keyFun)
glutMouseFunc(mouseFun)
glutMotionFunc(motionFun)
glutIdleFunc(None)
glEnable(GL_DEPTH_TEST)
glClearColor(0.0,0.0,0.0,0.0)
glMatrixMode(GL_PROJECTION)
glLoadIdentity()
gluPerspective(fov,600.0/600,1,1000)
#glutMainLoop()
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
config.log_device_placement = False
sess = tf.compat.v1.Session(config=config)
net = LrgNet(1, 1, NUM_INLIER_POINT, NUM_NEIGHBOR_POINT, FEATURE_SIZE)
saver = tf.compat.v1.train.Saver()
MODEL_PATH = 'models/lrgnet_model%s.ckpt'%AREA
saver.restore(sess, MODEL_PATH)
print('Restored network from %s'%MODEL_PATH)
result_points[:,3:6] = [100,100,100]
point_voxels = numpy.round(points[:,:3]/resolution).astype(int)
cluster_label = numpy.zeros(len(points), dtype=int)
cluster_id = 1
visited = numpy.zeros(len(point_voxels), dtype=bool)
inlier_points = numpy.zeros((1, NUM_INLIER_POINT, FEATURE_SIZE), dtype=numpy.float32)
neighbor_points = numpy.zeros((1, NUM_NEIGHBOR_POINT, FEATURE_SIZE), dtype=numpy.float32)
input_add = numpy.zeros((1, NUM_NEIGHBOR_POINT), dtype=numpy.int32)
input_remove = numpy.zeros((1, NUM_INLIER_POINT), dtype=numpy.int32)
#iterate over each object in the room
#for seed_id in range(len(point_voxels)):
for seed_id in numpy.arange(len(points))[numpy.argsort(curvatures)]:
if visited[seed_id]:
continue
seed_voxel = point_voxels[seed_id]
target_id = obj_id[seed_id]
target_class = classes[cls_id[numpy.nonzero(obj_id==target_id)[0][0]]]
gt_mask = obj_id==target_id
obj_voxels = point_voxels[gt_mask]
obj_voxel_set = set([tuple(p) for p in obj_voxels])
original_minDims = obj_voxels.min(axis=0)
original_maxDims = obj_voxels.max(axis=0)
currentMask = numpy.zeros(len(points), dtype=bool)
currentMask[seed_id] = True
minDims = seed_voxel.copy()
maxDims = seed_voxel.copy()
seqMinDims = minDims
seqMaxDims = maxDims
steps = 0
stuck = 0
#perform region growing
while True:
def stop_growing(reason):
global cluster_id
visited[currentMask] = True
if numpy.sum(currentMask) > cluster_threshold:
cluster_label[currentMask] = cluster_id
cluster_id += 1
iou = 1.0 * numpy.sum(numpy.logical_and(gt_mask,currentMask)) / numpy.sum(numpy.logical_or(gt_mask,currentMask))
print('room %d target %3d %.4s: step %3d %4d/%4d points IOU %.3f add %.3f rmv %.3f %s'%(room_id, target_id, target_class, steps, numpy.sum(currentMask), numpy.sum(gt_mask), iou, add_acc, rmv_acc, reason))
#determine the current points and the neighboring points
currentPoints = points[currentMask, :].copy()
newMinDims = minDims.copy()
newMaxDims = maxDims.copy()
newMinDims -= 1
newMaxDims += 1
mask = numpy.logical_and(numpy.all(point_voxels>=newMinDims,axis=1), numpy.all(point_voxels<=newMaxDims, axis=1))
mask = numpy.logical_and(mask, numpy.logical_not(currentMask))
mask = numpy.logical_and(mask, numpy.logical_not(visited))
expandPoints = points[mask, :].copy()
expandClass = obj_id[mask] == target_id
rejectClass = obj_id[currentMask] != target_id
if len(expandPoints)==0: #no neighbors (early termination)
stop_growing('noneighbor')
break
if len(currentPoints) >= NUM_INLIER_POINT:
subset = numpy.random.choice(len(currentPoints), NUM_INLIER_POINT, replace=False)
else:
subset = list(range(len(currentPoints))) + list(numpy.random.choice(len(currentPoints), NUM_INLIER_POINT-len(currentPoints), replace=True))
center = numpy.median(currentPoints, axis=0)
expandPoints = numpy.array(expandPoints)
expandPoints[:,:2] -= center[:2]
expandPoints[:,6:] -= center[6:]
inlier_points[0,:,:] = currentPoints[subset, :]
inlier_points[0,:,:2] -= center[:2]
inlier_points[0,:,6:] -= center[6:]
input_remove[0,:] = numpy.array(rejectClass)[subset]
if len(expandPoints) >= NUM_NEIGHBOR_POINT:
subset = numpy.random.choice(len(expandPoints), NUM_NEIGHBOR_POINT, replace=False)
else:
subset = list(range(len(expandPoints))) + list(numpy.random.choice(len(expandPoints), NUM_NEIGHBOR_POINT-len(expandPoints), replace=True))
neighbor_points[0,:,:] = numpy.array(expandPoints)[subset, :]
input_add[0,:] = numpy.array(expandClass)[subset]
ls, add,add_acc, rmv,rmv_acc = sess.run([net.loss, net.add_output, net.add_acc, net.remove_output, net.remove_acc],
{net.inlier_pl:inlier_points, net.neighbor_pl:neighbor_points, net.add_mask_pl:input_add, net.remove_mask_pl:input_remove})
add_conf = scipy.special.softmax(add[0], axis=-1)[:,1]
rmv_conf = scipy.special.softmax(rmv[0], axis=-1)[:,1]
add_mask = numpy.random.random(len(add_conf)) < add_conf
rmv_mask = numpy.random.random(len(rmv_conf)) < rmv_conf
addPoints = neighbor_points[0,:,:][add_mask]
addPoints[:,:2] += center[:2]
addVoxels = numpy.round(addPoints[:,:3]/resolution).astype(int)
addSet = set([tuple(p) for p in addVoxels])
rmvPoints = inlier_points[0,:,:][rmv_mask]
rmvPoints[:,:2] += center[:2]
rmvVoxels = numpy.round(rmvPoints[:,:3]/resolution).astype(int)
rmvSet = set([tuple(p) for p in rmvVoxels])
updated = False
add_mask = numpy.zeros(len(points), dtype=bool)
remove_mask = numpy.zeros(len(points), dtype=bool)
previousMask = currentMask.copy()
for i in range(len(point_voxels)):
if not currentMask[i] and tuple(point_voxels[i]) in addSet:
add_mask[i] = True
currentMask[i] = True
updated = True
if tuple(point_voxels[i]) in rmvSet:
remove_mask[i] = True
currentMask[i] = False
steps += 1
#slightly rotate camera
# rho = math.sqrt(cameraX*cameraX+cameraY*cameraY)
# theta = numpy.arctan2(cameraY, cameraX)
# theta += 0.01
# cameraX = rho * numpy.cos(theta)
# cameraY = rho * numpy.sin(theta)
obj_color = numpy.ones((len(points), 3)) * 100
obj_color[currentMask] = [0, 255, 0]
# obj_color[currentMask] = [150, 150, 150]
obj_color[mask] = [0, 0, 255]
jet = plt.get_cmap('jet')
result_points[:,3:6] = obj_color[unequalized_idx]
# viz_points = neighbor_points[0,:,:]
# viz_points[:,:2] += center[:2]
# viz_points[:,3:6] = jet(cls_conf)[:,:3] * 255
displayFun()
data = glReadPixels(0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE)
image = Image.frombytes("RGBA", (width, height), data)
image = ImageOps.flip(image)
d = ImageDraw.Draw(image)
fnt = ImageFont.truetype('FreeMono.ttf', 40)
d.text((10,10), "Step %d"%steps, font=fnt, fill=(255,255,255,255))
d.text((10,60), "Inlier Set: %d points"%(numpy.sum(previousMask[unequalized_idx])), font=fnt, fill=(255,255,255,255))
d.text((10,110), "Neighbor Set: %d points"%(numpy.sum(mask[unequalized_idx])), font=fnt, fill=(255,255,255,255))
d.text((10,160), "Add: %d points"%numpy.sum(add_mask[unequalized_idx]), font=fnt, fill=(255,255,255,255))
d.text((10,210), "Remove: %d points"%numpy.sum(remove_mask[unequalized_idx]), font=fnt, fill=(255,255,255,255))
image.save('tmp/step%03d.png' % img_id, 'PNG')
instance_color[currentMask] = instance_color_id[cluster_id]
result_points[:,3:6] = instance_color[unequalized_idx]
displayFun()
data = glReadPixels(0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE)
image = Image.frombytes("RGBA", (width, height), data)
image = ImageOps.flip(image)
image.save('tmp/seg%03d.png' % img_id, 'PNG')
# print('Saved image %d'%img_id)
img_id += 1
if updated: #continue growing
minDims = point_voxels[currentMask, :].min(axis=0)
maxDims = point_voxels[currentMask, :].max(axis=0)
if not numpy.any(minDims<seqMinDims) and not numpy.any(maxDims>seqMaxDims):
if stuck >= 1:
stop_growing('stuck')
break
else:
stuck += 1
else:
stuck = 0
seqMinDims = numpy.minimum(seqMinDims, minDims)
seqMaxDims = numpy.maximum(seqMaxDims, maxDims)
else: #no matching neighbors (early termination)
stop_growing('noexpand')
break
# break