-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsample_analysis.py
821 lines (690 loc) · 32.4 KB
/
sample_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
'''
================================================
VOICEOME REPOSITORY
================================================
repository name: Voiceome
repository version: 1.0
repository link: https://github.com/jim-schwoebel/voiceome
author: Jim Schwoebel
author contact: [email protected]
description: A set of scripts related to the Voiceome Study, a clinical study for speech and language biomarker research N=6000+
license category: opensource
license: Apache 2.0 license
organization name: Sonde Health Inc.
location: Boston, MA
website: https://sondehealth.com
release date: 2021-06-13
This code (Voiceome) is hereby released under a Apache 2.0 license license.
For more information, check out the license terms below.
================================================
DESCRIPTION
================================================
Voiceome.py
A simple set of scripts to help with various tasks related to the Voiceome
dataset. This includes:
- cleaning audio to mono16Hz
- featurizing audio
- querying reference ranges as published in the paper
- transcribing audio files with Microsoft Azure (given environment variables)
- defining quality criteria for each speech task / calculating metrics
Thank you for your interest in our work!
================================================
LICENSE TERMS
================================================
Copyright 2021 by Jim Schwoebel.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
'''
######################################################################
## IMPORTS ##
######################################################################
import sys, os, json, time, shutil, argparse, random, math
import matplotlib.pyplot as plt
import soundfile as sf
import numpy as np
from pyvad import vad, trim, split
import pandas as pd
from datetime import datetime
import librosa
import matplotlib.pyplot as plt
import numpy as np
import difflib
import nltk
from nltk import word_tokenize
import speech_recognition as sr
from tqdm import tqdm
from beautifultable import BeautifulTable
directory=os.getcwd()
######################################################################
## QUALITY METRICS ##
######################################################################
def extract_transcript(transcript):
try:
return transcript.split(') ')[1]
except:
return ''
def animal_features(transcript, animal_list):
transcript=transcript.lower().split(' ')
count=0
for j in range(len(transcript)):
if transcript in animal_list:
count=count+1
return count
def letterf_features(transcript):
transcript=transcript.lower().split(' ')
count=0
words=list()
for j in range(len(transcript)):
if transcript[j].startswith('f') and transcript[j] not in words:
count=count+1
words.append(transcript[j])
return count
def passage_features(transcript, reference):
# similarity (https://stackoverflow.com/questions/1471153/string-similarity-metrics-in-python)
# similarity
seq=difflib.SequenceMatcher(a=transcript.lower(), b=reference.lower())
# longest matching string
match = seq.find_longest_match(0, len(transcript), 0, len(reference))
return 100*seq.ratio() #, match.size, match.a, match.b
def bnt_features(transcript):
# use 'deepspeech_dict' setting in Allie ML framework
transcript=transcript.lower().split()
# print(transcript)
counts=0
if 'mushroom' in transcript:
counts=counts+1
if 'bicycle' in transcript:
counts=counts+1
if 'camel' in transcript:
counts=counts+1
if 'camera' in transcript:
counts=counts+1
if 'chicken' in transcript:
counts=counts+1
if 'dinosaur' in transcript or 'brontosaurus' in transcript or 'brontosaur' in transcript:
counts=counts+1
if 'balloon' in transcript or 'bullion' in transcript:
counts=counts+1
if 'glasses' in transcript or 'spectacles' in transcript or 'bifocals' in transcript:
counts=counts+1
if 'gorilla' in transcript:
counts=counts+1
if 'volcano' in transcript:
counts=counts+1
if 'asparagus' in transcript:
counts=counts+1
if 'pizza' in transcript or 'piazza' in transcript:
counts=counts+1
if 'railroad' in transcript or 'track' in transcript or 'tracks' in transcript:
counts=counts+1
if 'scissors' in transcript:
counts=counts+1
if 'shovel' in transcript:
counts=counts+1
if 'flamingo' in transcript:
counts=counts+1
if 'suit' in transcript or 'suitcase' in transcript or 'case' in transcript:
counts=counts+1
if 'telephone' in transcript or 'phone' in transcript:
counts=counts+1
if 'later' in transcript or 'ladder' in transcript:
counts=counts+1
if 'toothbrush' in transcript or 'tooth' in transcript or 'brush' in transcript:
counts=counts+1
if 'coconut' in transcript or 'cocoanut' in transcript:
counts=counts+1
if 'while' in transcript or 'wallet' in transcript:
counts=counts+1
if 'pineapple' in transcript or 'pine' in transcript:
if 'pine' in transcript and 'apple' in transcript:
counts=counts+1
else:
counts=counts+1
if 'cactus' in transcript:
counts=counts+1
return counts
def nonword_features(transcript):
# use 'deepspeech_nodict' setting in Allie ML framework
transcript=transcript.lower().split()
# print(transcript)
counts=0
if 'plive' in transcript or 'pli' in transcript or 'live' in transcript or 'pliv' in transcript or 'life' in transcript or 'plife' in transcript:
counts=counts+1
if 'for' in transcript or 'flove' in transcript:
counts=counts+1
if 'zowl' in transcript or 'thou' in transcript or 'zone' in transcript or 'zoul' in transcript:
counts=counts+1
if 'zox' in transcript or 'zoolix' in transcript or 'filks' in transcript:
counts=counts+1
if 'they' in transcript or 'tave' in transcript or 'wall' in transcript or 'vave' in transcript:
counts=counts+1
if 'kwaj' in transcript or 'quash' in transcript or 'quatda' in transcript:
counts=counts+1
if 'jom' in transcript or 'joam' in transcript or 'dram' in transcript or 'jome' in transcript:
counts=counts+1
if 'boys' in transcript or 'boyl' in transcript or 'bwils' in transcript or 'bwiz' in transcript:
counts=counts+1
if 'broe' in transcript or 'brow' in transcript:
counts=counts+1
if 'nay' in transcript or 'nayb' in transcript or 'nab' in transcript or 'a' in transcript:
counts=counts+1
return counts
######################################################################
## QUERYING DATABASES ##
######################################################################
def mean_std(list_):
array_=np.array(list_)
return np.mean(array_), np.std(array_)
def get_reference(task, feature_embedding, feature, agegender, basedir):
curdir=os.getcwd()
os.chdir(basedir)
os.chdir('data')
os.chdir('references')
# go to proper location
if task in ['microphone_task', 'freespeech_task', 'picture_task', 'category_task',
'letterf_task', 'paragraph_task', 'ahh_task', 'papapa_task', 'pataka_task',
'mandog_task', 'tourbus_task', 'diagnosis_task', 'medication_task']:
os.chdir('main_tasks')
elif task in ['mushroom_task', 'bicycle_task', 'camel_task', 'camera_task', 'chicken_task',
'dinosaur_task', 'balloon_task', 'glasses_task', 'gorilla_task', 'volcano_task',
'asparagus_task', 'pizza_task', 'railroad_task', 'scissors_task', 'shovel_task',
'flamingo_task', 'suitcase_task', 'telephone_task', 'ladder_task', 'toothbrush_task',
'hammer_task', 'coconut_task', 'wallet_task', 'pineapple_task', 'cactus_task']:
os.chdir('bnt_task')
elif task in ['plive_task', 'broe_task', 'jome_task', 'zulx_task', 'zowl_task',
'vave_task', 'fwov_task', 'nayb_task', 'kwaj_task', 'bwiz_task']:
os.chdir('nonword_task')
# 00. Microphone check task = 'microphone_task'
if task == 'microphone_task':
data=json.load(open('00_mic_check.json'))
# 01. Free speech task = 'freespeech_task'
elif task == 'freespeech_task':
data=json.load(open('01_free_speech.json'))
# 02. Picture description task = 'picture_task'
elif task == 'picture_task':
data=json.load(open('02_picture_description.json'))
# 03. Category naming task = 'category_task'
elif task == 'category_task':
data=json.load(open('03_animal_naming.json'))
# 04. Letter {FAS} Tasks = 'leterf_task'
elif task == 'letterf_task':
data=json.load(open('04_letter_f_naming.json'))
# 05. Paragraph reading task = 'paragraph_task'
elif task == 'paragraph_task':
data=json.load(open('05_caterpillar_reading.json'))
# 06. Sustained phonation ('ahh') = 'ahh_task'
elif task == 'ahh_task':
data=json.load(open('06_sustained_ahh.json'))
# 07. Pa pa pa task = 'papapa_task'
elif task == 'papapa_task':
data=json.load(open('07_pa_pa_pa.json'))
# 08. Pa taska ka task - 'pataka_task'
elif task == 'pataka_task':
data=json.load(open('08_pa_ta_ka.json'))
# 09. Confrontational naming task (different images) - 'bnt_task'
elif task == 'mushroom_task':
data=json.load(open('01_Mushroom.json'))
elif task == 'bicycle_task':
data=json.load(open('02_Bicycle.json'))
elif task == 'camel_task':
data=json.load(open('03_Camel.json'))
elif task == 'camera_task':
data=json.load(open('04_Camera.json'))
elif task == 'chicken_task':
data=json.load(open('05_Chicken.json'))
elif task == 'dinosaur_task':
data=json.load(open('06_Dinosaur.json'))
elif task == 'balloon_task':
data=json.load(open('07_Balloon.json'))
elif task == 'glasses_task':
data=json.load(open('08_Glasses.json'))
elif task == 'gorilla_task':
data=json.load(open('09_Gorilla.json'))
elif task == 'volcano_task':
data=json.load(open('10_Volcano.json'))
elif task == 'asparagus_task':
data=json.load(open('11_Asparagus.json'))
elif task == 'pizza_task':
data=json.load(open('12_Pizza.json'))
elif task == 'railroad_task':
data=json.load(open('13_Railroad.json'))
elif task == 'scissors_task':
data=json.load(open('14_Scissors.json'))
elif task == 'shovel_task':
data=json.load(open('15_Shovel.json'))
elif task == 'flamingo_task':
data=json.load(open('16_Flamingo.json'))
elif task == 'suitcase_task':
data=json.load(open('17_Suitcase.json'))
elif task == 'telephone_task':
data=json.load(open('18_Telephone.json'))
elif task == 'ladder_task':
data=json.load(open('19_Ladder.json'))
elif task == 'toothbrush_task':
data=json.load(open('20_Toothbrush.json'))
elif task == 'hammer_task':
data=json.load(open('21_Hammer.json'))
elif task == 'coconut_task':
data=json.load(open('22_Coconut.json'))
elif task == 'wallet_task':
data=json.load(open('23_Wallet.json'))
elif task == 'pineapple_task':
data=json.load(open('24_Pineapple.json'))
elif task == 'cactus_task':
data=json.load(open('25_Cactus.json'))
# 10. Nonword task (different nonwords) - 'nonword_task'
elif task == 'plive_task':
data=json.load(open('01_Plive.json'))
elif task == 'broe_task':
data=json.load(open('02_Fwov.json'))
elif task == 'jome_task':
data=json.load(open('03_Zowl.json'))
elif task == 'zulx_task':
data=json.load(open('04_Zulx.json'))
elif task == 'zowl_task':
data=json.load(open('05_Vave.json'))
elif task == 'vave_task':
data=json.load(open('06_Kwaj.json'))
elif task == 'fwov_task':
data=json.load(open('07_Jome.json'))
elif task == 'nayb_task':
data=json.load(open('08_Bwiz.json'))
elif task == 'kwaj_task':
data=json.load(open('09_Broe.json'))
elif task == 'bwiz_task':
data=json.load(open('10_Nayb.json'))
# 11. Immediate recall task - 'mandog_task' or 'tourbus_task'
elif task == 'mandog_task':
data=json.load(open('45_repeat_mandog.json'))
elif task == 'tourbus_task':
data=json.load(open('47_repeat_schoolbus.json'))
# 12. Spoken diagnosis task - 'diagnosis_task'
elif task == 'diagnosis_task':
data=json.load(open('48_diagnosis_task.json'))
# 13. Spoken medication task - 'medication_task'
elif task == 'medication_task':
data=json.load(open('49_medication_task.json'))
# calculate possible featurestypes here
os.chdir(basedir)
os.chdir('data')
os.chdir('options')
options=json.load(open('feature_options.json'))
feature_embeddings=list(options)
features=list()
for i in range(len(feature_embeddings)):
features=features+options[feature_embeddings[i]]
# print(features)
# age options
agegenders=['TwentiesMale', 'TwentiesFemale', 'ThirtiesMale', 'ThirtiesFemale', 'FourtiesMale]', 'FourtiesFemale', 'FiftiesMale', 'FiftiesFemale', 'SixtiesMale', 'SixtiesFemale', 'AllAgesGenders']
os.chdir(curdir)
# return results
if feature_embedding in feature_embeddings and feature in features and agegender in agegenders:
return data[feature_embedding][feature][agegender]
else:
return 'ERROR - FeatureType, Feature, or Age not recognize. Please check these settings and try again.'
def reference_task_embedding(task, feature_embedding, agegender, basedir):
# get all options
os.chdir(basedir)
os.chdir('data')
os.chdir('options')
feature_options=json.load(open('feature_options.json'))
feature_embeddings=list(feature_options)
agegender_options=json.load(open('agegender_options.json'))
agegenders=agegender_options['AgeGenderOptions']
names=list()
means=list()
stds=list()
ages=list()
samplenums=list()
if feature_embedding in feature_embeddings and agegender in agegenders:
features=feature_options[feature_embedding]
for i in range(len(features)):
data=get_reference(task, feature_embedding, features[i], agegender, basedir)
names.append(features[i])
means.append(data['AverageValue'])
stds.append(data['StdValue'])
ages.append(agegender)
samplenums.append(data['SampleNumber'])
elif feature_embedding not in feature_embeddings:
print('ERROR - [%s] is not a recognized feature embedding'%(feature_embedding))
elif agegender not in agegenders:
print('ERROR - [%s] is not a recognized age and gender'%(agegender))
return names, means, stds, ages, samplenums
def reference_feature_across_tasks(feature_embedding, feature, agegender, basedir):
# get all options
os.chdir(basedir)
os.chdir('data')
os.chdir('options')
feature_options=json.load(open('feature_options.json'))
feature_embeddings=list(feature_options)
agegender_options=json.load(open('agegender_options.json'))
agegenders=agegender_options['AgeGenderOptions']
task_options=json.load(open('task_options.json'))
tasks=task_options['AllTasks']
names=list()
means=list()
stds=list()
ages=list()
samplenums=list()
if agegender in agegenders and feature_embedding in feature_embeddings:
features=feature_options[feature_embedding]
for i in range(len(tasks)):
data=get_reference(tasks[i], feature_embedding, feature, agegender, basedir)
names.append(tasks[i])
means.append(data['AverageValue'])
stds.append(data['StdValue'])
ages.append(agegender)
samplenums.append(data['SampleNumber'])
elif feature_embedding not in feature_embeddings:
print('ERROR - [%s] is not a recognized feature embedding'%(feature_embedding))
elif agegender not in agegenders:
print('ERROR - [%s] is not a recognized age and gender'%(agegender))
return names, means, stds, ages, samplenums
def visualize_bar(feature, feature_embedding, names, means, stds, agegender, basedir, show):
os.chdir(basedir)
os.chdir('data')
os.chdir('visualizations')
plt.title(agegender)
plt.bar(names, means, yerr=stds)
plt.xticks(rotation='vertical')
plt.ylabel('%s'%(feature))
plt.xlabel('Task type')
plt.tight_layout()
plt.savefig(feature_embedding+'_'+feature+'.png')
if show == True:
plt.show()
os.chdir(basedir)
def visualize_bar_cohorts(feature, feature_embedding, names, means_1, stds_1, agegender_1, means_2, stds_2, agegender_2, basedir, show):
os.chdir(basedir)
os.chdir('data')
os.chdir('visualizations')
labels = names
men_means = means_1
women_means = means_2
x = np.arange(len(labels)) # the label locations
width = 0.35 # the width of the bars
fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, men_means, width, label=agegender_1)
rects2 = ax.bar(x + width/2, women_means, width, label=agegender_2)
# Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_ylabel(feature)
ax.set_title(agegender_1 + ' | ' + agegender_2)
ax.set_xticks(x)
ax.set_xticklabels(labels)
ax.legend()
ax.bar_label(rects1, padding=3)
ax.bar_label(rects2, padding=3)
plt.xticks(rotation='vertical')
fig.tight_layout()
plt.savefig(feature_embedding+'_'+feature+'_'+agegender_1+'_'+agegender_2+'.png')
if show==True:
plt.show()
os.chdir(basedir)
######################################################################
## LOAD SETTINGS ##
######################################################################
settings=json.load(open('settings.json'))
# specify azure settings
os.environ['AZURE_SPEECH_KEY']=settings['AzureKey']
os.environ['AZURE_SPEECH_RECOGNITION_LANGUAGE']='en-US'
os.environ['AZURE_REGION']='East-US'
# all other settings
basedir=os.getcwd()
transcript_engine=settings['TranscriptEngine']
feature_embedding=settings['FeatureEmbedding']
featuretype=settings['FeatureType']
task=settings['Task']
clean_audio=settings['CleanAudio']
agegender = settings['DefaultAgeGender']
######################################################################
## MAIN SCRIPT ##
######################################################################
# get reference
print(feature_embedding + ' - ' + featuretype)
data=get_reference(task, feature_embedding, featuretype, agegender, basedir)
table = BeautifulTable()
table.columns.header = ["Task", "FeatureType", "Feature", "AgeGender", "Average", "Standard Deviation", "Sample Number"]
table.rows.append([task, feature_embedding, featuretype, agegender, data['AverageValue'], data['StdValue'], data['SampleNumber']])
print(table)
# get reference by embedding
names, means, stds, ages, samplenums =reference_task_embedding(task, feature_embedding, agegender, basedir)
table = BeautifulTable()
table.columns.header = ["Task", "FeatureType", "Feature", "AgeGender", "Average", "Standard Deviation", "Sample Number"]
for i in range(len(means)):
table.rows.append([task, feature_embedding, names[i], agegender, means[i], stds[i], samplenums[i]])
print(table)
# get reference by embedding
names, means, stds, ages, samplenums =reference_feature_across_tasks(feature_embedding, featuretype, 'TwentiesMale', basedir)
table = BeautifulTable()
table.columns.header = ["Task", "FeatureType", "Feature", "AgeGender", "Average", "Standard Deviation", "Sample Number"]
for i in range(len(means)):
table.rows.append([task, feature_embedding, names[i], agegender, means[i], stds[i], samplenums[i]])
print(table)
# visualize these as a bar chart
visualize_bar(featuretype, feature_embedding, names, means, stds, 'TwentiesMale', basedir, False)
names_2, means_2, stds_2, ages_2, samplenums =reference_feature_across_tasks(feature_embedding, featuretype, 'TwentiesFemale', basedir)
visualize_bar_cohorts(featuretype, feature_embedding, names, means, stds, 'TwentiesMale', means_2, stds_2, 'TwentiesFemale', basedir, False)
######################################################################
## TEST SURVEY A DATA ANALYSIS ##
######################################################################
# ## do analysis
os.chdir(basedir)
os.chdir('data')
os.chdir('test')
g=pd.read_csv('data.csv')
labels=list(g)
for i in range(len(labels)):
if labels[i].lower().find('caterpillar') > 0:
caterpillar=labels[i]
fox=g['Please click the start button and then say:\n\n"The quick brown fox jumps over the lazy dog."\n\nYou may press the Stop button if you finish before the timer runs out.']
memory=g['Tell us about a recent happy memory based on experiences from the past month.']
picture=g['Tell us everything you see going on in this picture.\n\n<center>![Aphasia image](http://www.neurolex.co/uploads/alphasia.png)</center>']
animals=g['Category: ANIMALS. Name all the animals you can think of as quickly as possible before the time elapses below.']
letterf=g['Letter: F. Name all the words beginning with the letter F you can think of as quickly as possible before the time elapses below.']
passage=g[caterpillar]
mandog=g['Please repeat back what you just heard as accurately as possible. You may press the stop button if you finish before the timer runs out.']
tourbus=g['Please repeat back what you just heard as accurately as possible. You may press the stop button if you finish before the timer runs out..1']
# get transcripts
transcript=extract_transcript('(nlx-35ec5930-a10d-11ea-ad75-47afc39b88d6 00:00:59.90) I spent some time recently in the back garden with my dogs. Um, it was really nice because we just relaxed and sat out there. It was a sunny day. It had been raining a lot recently and it was the first sunny day. So we got to sit out and relax. My family were also there and it was a really enjoyable afternoon. Also, we cook together later in the day, so that was enjoyable as well. ')
# passage references
fox_passage="The Quick Brown Fox jumps over the lazy dog."
caterpillar_passage="Do you like amusement parks? Well, I sure do. To amuse myself, I went twice last spring. My most MEMORABLE moment was riding on the Caterpillar, which is a gigantic roller coaster high above the ground. When I saw how high the Caterpillar rose into the bright blue sky I knew it was for me. After waiting in line for thirty minutes, I made it to the front where the man measured my height to see if I was tall enough. I gave the man my coins, asked for change, and jumped on the cart. Tick, tick, tick, the Caterpillar climbed slowly up the tracks. It went SO high I could see the parking lot. Boy was I SCARED! I thought to myself, “There’s no turning back now.†People were so scared they screamed as we swiftly zoomed fast, fast, and faster along the tracks. As quickly as it started, the Caterpillar came to a stop. Unfortunately, it was time to pack the car and drive home. That night I dreamt of the wild ride on the Caterpillar. Taking a trip to the amusement park and riding on the Caterpillar was my MOST memorable moment ever!"
mandog_passage="the man saw the boy that the dog chased"
tourbus_passage="the tour bus is coming into the town to pick up the people from the hotel to go swimming."
# print(transcript)
print('Fox passage')
fox_metrics=list()
for i in range(len(fox)):
transcript=extract_transcript(fox[i])
metric=passage_features(transcript, fox_passage)
fox_metrics.append(metric)
mean_, std_=mean_std(fox_metrics)
print(mean_)
print('+/- %s'%(str(std_)))
# print(transcript)
print('Paragraph - caterpillar')
caterpillar_metrics=list()
for i in range(len(passage)):
transcript=extract_transcript(passage[i])
metric=passage_features(transcript, caterpillar_passage)
caterpillar_metrics.append(metric)
mean_, std_=mean_std(caterpillar_metrics)
print(mean_)
print('+/- %s'%(str(std_)))
# print(transcript)
print('Recall - mandog')
# recall_mandog=g['Please listen carefully to the following audio clip once.\n\n[autoplay](https://s3.amazonaws.com/www.voiceome.org/data/mandog.mp3)']
mandog_metrics=list()
transcript=extract_transcript(mandog[0])
# recall_transcript=extract_transcript(recall_mandog)
metric=passage_features(transcript, mandog_passage)
mandog_metrics.append(metric)
mean_, std_=mean_std(mandog_metrics)
print(mean_)
print('+/- %s'%(str(std_)))
# print(transcript)
print('Recall - tourbus')
# recall_tourbus=g['Please listen carefully to the following audio clip once.\n\n[autoplay](https://s3.amazonaws.com/www.voiceome.org/data/tourbus.mp3)']
tourbus_metrics=list()
transcript=extract_transcript(tourbus[0])
# recall_transcript=extract_transcript(recall_tourbus[i])
metric=passage_features(transcript, tourbus_passage)
tourbus_metrics.append(metric)
mean_, std_=mean_std(tourbus_metrics)
print(mean_)
print('+/- %s'%(str(std_)))
print('LetterF')
letterf_metrics=list()
for i in range(len(letterf)):
transcript=extract_transcript(letterf[i])
print(transcript)
metric=letterf_features(transcript)
letterf_metrics.append(metric)
mean_, std_=mean_std(letterf_metrics)
print(mean_)
print('+/- %s'%(str(std_)))
animals=g['Category: ANIMALS. Name all the animals you can think of as quickly as possible before the time elapses below.']
animal_metrics=list()
words=list()
stopwords=['um', 'think','hum','oh',"let's",'blue','name','uhm','brown',"i'm",'category','ok','uh',
'time','ah', 'yeah', 'hey', 'love', 'lot', 'god', 'eh', 'funny', 'sure', 'honey', 'sugar',
'doc', 'email', 'al', 'il', 'rap', 'count', 'talk', 'check', 'ha', 'anything', 'jack', 'cheap',
'wow', 'world', 'devil', 'gosh', 'mama', 'please', 'kind', 'king', 'thing', 'sorry', 'see',
'awesome', 'uhm', 'yellow', 'tail', 'need', 'mu', 'search', 'wizard', 'kid', 'wanna', 'mind', 'girl',
'giant', 'fire', 'care', 'steak', 'weather', 'war', 'window', 'rock', 'ego', 'word', 'camera', 'square',
'kiwi', 'pie', 'cheat', 'kit', 'grey', 'warm', 'dumb', 'border', 'auto', 'god', 'fear', 'die', 'author', 'mix',
'experience', 'grow', 'aw', 'doe', 'drive', 'stuck', 'number', 'oil', 'fan', 'pay', 'amazon', 'problem', 'jesus',
'laugh', "i'd", 'ghost', 'cause', 'target', 'pay', 'mingo', 'tire', 'strange', 'bar', 'canadian', 'beef',
'wine', 'asp', 'poop', 'dollar', 'record', 'coca', 'exit', 'ceo', 'donald', 'blog', 'store', 'myth', 'act', 'ow',
'horny', 'alliana', 'gun', 'cina', 'firm', 'elf', 'walmart', 'remind', 'mr', 'underground', 'hurdle', 'payroll',
'commas',' audi', 'salon', 'milk']
for i in range(len(animals)):
transcript=extract_transcript(animals[i]).lower().replace('.','').replace('?','').replace(',','').split()
count=0
for j in range(len(transcript)):
# cehck if the word is a noun
if nltk.pos_tag(word_tokenize(transcript[j]))[0][1] == 'NN' and transcript[j] not in stopwords:
count=count+1
animal_metrics.append(count)
print('ANIMALS')
mean_, std_ = mean_std(animal_metrics)
print(mean_)
print('+/- %s'%(str(std_)))
######################################################################
## TEST SURVEY A FEATURIZATION/CLEANING ##
######################################################################
def get_wavfile(transcript):
wavfile=transcript.split(' ')[0].replace('(','')+'.wav'
return wavfile
def combine_wavfiles(wavfiles, sessionid, type_):
curdir=os.getcwd()
cmd='sox'
for k in range(len(wavfiles)):
cmd=cmd+' '+wavfiles[k]
cmd=cmd+' %s_%s.wav'%(sessionid, type_)
os.chdir(sessionid)
os.system(cmd)
os.chdir(curdir)
os.chdir(basedir)
os.chdir('data')
os.chdir('test')
## CLEAN the CSV spreadsheet!
os.system('python3 clean.py')
data=pd.read_csv('clean.csv')
sessions = data['sessionId']
# we go to the right spot and need to map elictation types to prompts
curdir=os.getcwd()
sys.path.append(curdir)
from prompts import *
# this unlocks bnt_tasks | nonword_tasks | all_tasks
## Make Functions ##
# --> stich together all the BNT-naming prompts (1 master session) --> sessionid_bnt.wav
for i in range(len(data)):
session=str(sessions[i])
wavfiles=list()
for j in range(len(bnt_tasks)):
bnt_task=data[bnt_tasks[j]][i]
wavfile=get_wavfile(bnt_task)
wavfiles.append(wavfile)
combine_wavfiles(wavfiles, session,'bnt')
# --> stitch together all the Nonword-naming prompts (1 master session) --> sessionid_nonword.wav
for i in range(len(data)):
session=str(sessions[i])
wavfiles=list()
for j in range(len(nonword_tasks)):
nonword_task=data[nonword_tasks[j]][i]
wavfile=get_wavfile(nonword_task)
wavfiles.append(wavfile)
combine_wavfiles(wavfiles, session,'nonword')
## clean (mono 16000 Hz) featurize sesions
for i in range(len(data)):
session=str(sessions[i])
os.chdir(curdir)
os.chdir('allie')
# if clean_audio == True:
# os.system('python3 allie.py --command clean --sampletype audio --dir %s'%(curdir+'/'+session))
os.system('python3 allie.py --command features --sampletype audio --dir %s'%(curdir+'/'+session))
## visualize relative to standards
os.chdir(basedir)
os.chdir('data')
os.chdir('options')
tasks=json.load(open('task_options.json'))['AllTasks']
os.chdir(basedir)
os.chdir('data')
os.chdir('test')
os.chdir(sessions[0])
means_3=list()
stds_3=list()
for i in range(len(tasks)):
wavfile=get_wavfile(data[all_tasks[i]][0]).replace('.wav','_cleaned.wav')
jsonfile=wavfile[0:-4]+'.json'
# convert to the format of this repository (Allie --> Voiceome)
if feature_embedding == 'OpensmileFeatures':
feature_data=json.load(open(jsonfile))['features']['audio']['opensmile_features']
elif feature_embedding == 'ProsodyFeatures':
feature_data=json.load(open(jsonfile))['features']['audio']['prosody_features']
elif feature_embedding == 'PauseFeatures':
feature_data=json.load(open(jsonfile))['features']['audio']['pause_features']
elif feature_embedding == 'AudiotextFeatures':
feature_data=json.load(open(jsonfile))['features']['audio']['audiotext_features']
dict_=dict(zip(feature_data['labels'],feature_data['features']))
value_=dict_[featuretype]
means_3.append(value_)
stds_3.append(0)
# visualize recent featurizations against the data
visualize_bar_cohorts(featuretype, feature_embedding, names, means_3, stds_3, 'Jim (ThirtiesMale)', means_2, stds_2, 'TwentiesFemale', basedir, False)
visualize_bar_cohorts(featuretype, feature_embedding, names, means_3, stds_3, 'Jim (ThirtiesMale)', means, stds, 'TwentiesMale', basedir, False)
######################################################################
## BNT AND NONWORD METRICS ##
######################################################################
os.chdir(basedir)
os.chdir('data')
os.chdir('test')
os.chdir(sessions[0])
# sample BNT value
listdir=os.listdir()
for i in range(len(listdir)):
if listdir[i].find('bnt') >= 0 and listdir[i].endswith('.json'):
# used deepspeech transcript in the paper
transcript=json.load(open(listdir[i]))['transcripts']['audio']['deepspeech_dict']
bnt_metric=bnt_features(transcript)
print('Confrontational Naming Task:')
print(bnt_metric)
break
# sample nonword value
listdir=os.listdir()
for i in range(len(listdir)):
if listdir[i].find('nonword') >= 0 and listdir[i].endswith('.json'):
# used deepspeech no_dict in the paper
transcript=json.load(open(listdir[i]))['transcripts']['audio']['deepspeech_nodict']
nonword_metric=nonword_features(transcript)
print('Nonword Task:')
print(nonword_metric)
break