-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathbuild_graph.py
1105 lines (892 loc) · 50.8 KB
/
build_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import division
from __future__ import print_function
#
import os
import time
from src_common.common.format_helper import *
from src_common.common.visual_helper import *
# data
from src_common.data import find_dataloader_using_name
# geometry
from src_common.geometry.gpmm.bfm09_tf_uv import BFM_TF
# common
from src_common.common.parse_encoder import parse_coeff_list
from src_common.geometry.camera_distribute.camera_utils import *
from src_common.geometry.face_align.align_facenet import get_facenet_align_lm
from .deep_3dmm_decoder import *
# multiview
from src_common.geometry.geo_utils import projective_inverse_warp
from .decoder_multiView import *
# tf
#
# loss
from .deep_3dmm_loss import *
class MGC_TRAIN(object):
def __init__(self, opt):
self.opt = opt
# 3dmm
self.h_lrgp = BFM_TF(opt.path_gpmm, opt.gpmm_rank, opt.gpmm_exp_rank, opt.batch_size, full=1)
def build_train_graph_dataLoader(self):
opt = self.opt
DataLoader = find_dataloader_using_name(opt.dataset_loader)
#getattr(sys.modules[__name__], self.data_loader_name)
data_loader = DataLoader(opt.dataset_dir,
opt.batch_size,
opt.img_height,
opt.img_width,
opt.num_source,
match_num=opt.match_num,
flag_data_aug=opt.flag_data_aug,
flag_shuffle=opt.flag_shuffle)
with tf.name_scope("data_loading"):
batch_sample = data_loader.load_train_batch()
# give additional batch_size info since the input is undetermined placeholder
batch_image_concat, batch_skin_concat, batch_flag_sgl_mul, batch_intrinsic, batch_intrinsic, batch_matches = \
batch_sample.get_next()
def process_skin(list_skin):
list_skin_prop = []
for skin in list_skin:
skin = tf.image.convert_image_dtype(skin, dtype=tf.float32)
skin = tf.image.rgb_to_grayscale(skin)
tgt_skin_add = skin > 0.5
tgt_skin_add = tf.cast(tgt_skin_add , tf.float32)
tgt_skin_store = 1.0 - tgt_skin_add
tgt_skin_pro = tgt_skin_add + skin * tgt_skin_store
list_skin_prop.append(tgt_skin_pro)
return list_skin_prop
#
self.tgt_image = batch_image_concat[:, :, :, :3]
self.src_image_stack = batch_image_concat[:, :, :, 3:]
self.tgt_image.set_shape([opt.batch_size, opt.img_height, opt.img_width, 3]) # [bs, 128, 416, 3]
self.src_image_stack.set_shape([opt.batch_size, opt.img_height, opt.img_width, 3 * opt.num_source]) # [bs, 128, 416, 6]
self.tgt_image = preprocess_image(self.tgt_image)
self.src_image_stack = preprocess_image(self.src_image_stack)
self.list_tar_image = [self.tgt_image]
self.list_src_image = [self.src_image_stack[:, :, :, i * 3:(i + 1) * 3] for i in range(opt.num_source)]
self.list_image = self.list_tar_image + self.list_src_image
#
self.tgt_skin = batch_skin_concat[:, :, :, :3]
self.tgt_skin = [self.tgt_skin]
self.list_tar_skin = process_skin(self.tgt_skin)
self.src_skin = batch_skin_concat[:, :, :, 3:]
self.src_skin.set_shape([opt.batch_size, opt.img_height, opt.img_width, 3*opt.num_source])
self.src_skin = [self.src_skin[:, :, :, i*3:(i+1)*3] for i in range(opt.num_source)]
self.list_src_skin = process_skin(self.src_skin)
self.list_skin = self.list_tar_skin + self.list_src_skin
#
self.flag_sgl_mul = tf.reshape(batch_flag_sgl_mul, [opt.batch_size]) # [bs, 1]
self.flag_sgl_mul = tf.cast(self.flag_sgl_mul, dtype=tf.float32) # [0, 1, 2]
self.matches = batch_matches
self.matches.set_shape([opt.batch_size, (opt.num_source+1), opt.match_num, 2])
self.lm2d_weight = np.ones(68, dtype=float)
self.lm2d_weight[28 - 1:36] = opt.lm_detail_weight
self.lm2d_weight[61 - 1:] = opt.lm_detail_weight
self.lm2d_weight = tf.constant(self.lm2d_weight, dtype=tf.float32)
self.list_lm2d_gt_tar = [self.matches[:, 0, :, :]]
self.list_lm2d_gt_src = [self.matches[:, i, :, :] for i in range(1, self.matches.shape[1])]
self.list_lm2d_gt = self.list_lm2d_gt_tar + self.list_lm2d_gt_src
return data_loader, batch_sample
def set_constant_node(self):
opt = self.opt
"""
************************************ data load ************************************
"""
self.global_step = tf.Variable(0, name='global_step', trainable=False)
self.batch_size = self.opt.batch_size
# camera
defined_pose_main = tf.constant([0.000000, 0.000000, 3.141593, 0.17440447, 9.1053238, 4994.3359], shape=[1, 6])
self.intrinsics_single = tf.constant([4700.000000, 0., 112.000000, 0., 4700.000000, 112.000000, 0., 0., 1.], shape=[1, 3, 3])
self.intrinsics_single = tf.tile(self.intrinsics_single, [self.batch_size, 1, 1])
self.gpmm_frustrum = build_train_graph_3dmm_frustrum(self.intrinsics_single)
self.defined_pose_main = tf.tile(defined_pose_main, [self.batch_size, 1])
# identity loss
defined_lm_facenet_align = get_facenet_align_lm(opt.img_height)
self.defined_lm_facenet_align = tf.tile(defined_lm_facenet_align, [self.batch_size, 1, 1])
"""
Train
"""
def build_train_graph(self, list_coeffALL=None):
'''[summary]
build training graph
Returns:
data loader and batch sample for train() to initialize
undefined placeholders
'''
opt = self.opt
"""
************************************ setting **********************************************
"""
self.set_constant_node()
self.total_loss = tf.constant(0.0)
# ******************************************** Network
if list_coeffALL is None:
list_coeffALL = pred_encoder_coeff_light(self.opt, self.defined_pose_main, self.list_image, is_training=True)
# ******************************************** Common flow
dict_loss_common, dict_intermedate_common = \
self.build_decoderCommon(list_coeffALL, self.list_image, self.list_skin, self.list_lm2d_gt, self.flag_sgl_mul)
self.dict_inter_comm = dict_intermedate_common
# ******************************************** Intermediate result for(print, visual, tensorboard)
# weighted loss for each view
self.gpmm_regular_shape_loss = dict_loss_common['reg_shape_loss']
self.gpmm_regular_color_loss = dict_loss_common['reg_color_loss']
self.gpmm_lm_loss = dict_loss_common['lm2d_loss']
self.gpmm_pixel_loss = dict_loss_common['render_loss']
self.gpmm_id_loss = dict_loss_common['id_loss']
# visual landmark on the rendered images/shade/render loss error map
#self.gpmm_pose_tar, self.gpmm_pose_src = parse_seq(dict_intermedate_common['pred_6dof_pose'])
self.lm2d_tar, self.lm2d_src = parse_seq(dict_intermedate_common['pred_lm2d'])
self.gpmm_render_tar, self.gpmm_render_src = parse_seq(dict_intermedate_common['3dmm_render'])
self.gpmm_render_mask_tar, self.gpmm_render_mask_src = parse_seq(dict_intermedate_common['3dmm_render_mask'])
self.gpmm_render_shade_tar, self.gpmm_render_shade_src = parse_seq(dict_intermedate_common['3dmm_render_shade'])
self.gpmm_render_tri_ids_tar, self.gpmm_render_tri_ids_src = parse_seq(dict_intermedate_common['3dmm_render_tri_id'])
self.list_render_loss_error_tar, self.list_render_loss_error_src = parse_seq(dict_intermedate_common['3dmm_render_loss_heat'])
# visual identity facenet input
self.gpmm_render_tar_align, self.gpmm_render_src_align = parse_seq(dict_intermedate_common['id_render_align'])
self.tar_image_align, self.src_image_align = parse_seq(dict_intermedate_common['id_image_align'])
# visual depthmap
self.tar_depths, self.lr_depths = parse_seq(dict_intermedate_common['3dmm_depthmap'])
self.gpmm_consist_pixel_tar = self.list_lm2d_gt_tar
self.gpmm_consist_pixel_src = self.list_lm2d_gt_src
self.common_loss = dict_loss_common['loss_common']
self.total_loss += self.common_loss
# ******************************************** Multi-view flow
dict_loss_mgc, dict_inter_mgc = \
self.build_decoderMGC(self.flag_sgl_mul, self.list_image, self.list_lm2d_gt, dict_intermedate_common)
self.dict_inter_mgc = dict_inter_mgc
# loss
self.ga_loss = dict_loss_mgc['loss_mgc']
self.ssim_loss = dict_loss_mgc['ssim_loss']
self.pixel_loss = dict_loss_mgc['pixel_loss']
self.epipolar_loss = dict_loss_mgc['epi_loss']
self.depth_loss = dict_loss_mgc['depth_loss']
self.total_loss += opt.MULTIVIEW_weight * dict_loss_mgc['loss_mgc']
# ******************************************** Training op
self.build_train_graph_train_op()
def build_decoderCommon(self, list_coeff_all, list_image, list_skin=None, list_lm2d_gt=None, flag_sgl_mul=None):
"""
A common mapping function from images to intermediate result
:param gpmm_frustrum:
:param list_image:
1.can be single image or multi images
2.shape: [bs, h, w, c]
:param list_lm2d_gt:
:return:
"""
dict_loss_common = dict()
dict_intermedate_common = dict()
"""
************************************ Coefficients (clean) *********************************
"""
list_gpmm, list_gpmm_color, list_gpmm_exp, list_gpmm_pose, list_gpmm_light = \
parse_coeff_list(self.opt, list_coeff_all, self.defined_pose_main)
dict_intermedate_common['pred_coeff_shape'] = list_gpmm
dict_intermedate_common['pred_coeff_color'] = list_gpmm_color
dict_intermedate_common['pred_coeff_exp'] = list_gpmm_exp
dict_intermedate_common['pred_coeff_light'] = list_gpmm_light
dict_intermedate_common['pred_6dof_pose'] = list_gpmm_pose
"""
************************************ Decoder **********************************************
"""
# bfm
list_gpmm_vertex, list_gpmm_vertexNormal, list_gpmm_vertexColor, list_gpmm_vertexShade, list_gpmm_vertexColorOri = \
decoder_colorMesh(self.h_lrgp, list_gpmm, list_gpmm_color, list_gpmm_exp, list_gpmm_light, flag_sgl_mul)
dict_intermedate_common['gpmm_vertex'] = list_gpmm_vertex
dict_intermedate_common['gpmm_vertexNormal'] = list_gpmm_vertexNormal
dict_intermedate_common['gpmm_vertexColor'] = list_gpmm_vertexColor
# cam
list_gpmm_ext, list_gpmm_proj, list_gpmm_mv, list_gpmm_eye = \
build_train_graph_3dmm_camera(self.intrinsics_single, list_gpmm_pose)
dict_intermedate_common['pred_cam_mv'] = list_gpmm_mv
dict_intermedate_common['pred_cam_eye'] = list_gpmm_eye
"""
************************************ Landmark (clean) *************************************
"""
# loss:lm
list_lm2d = decoder_lm(self.h_lrgp, list_gpmm_vertex, list_gpmm_proj) # bs, ver_num, xy
dict_intermedate_common['pred_lm2d'] = list_lm2d
"""
************************************ Render **********************************************
"""
list_gpmm_render, list_gpmm_render_mask, list_gpmm_render_tri_ids = decoder_renderColorMesh(
# gpmm_vertexColor: (0, Nan)
self.opt, self.h_lrgp, list_gpmm_vertex, list_gpmm_vertexNormal, list_gpmm_vertexColor,
self.gpmm_frustrum, list_gpmm_mv, list_gpmm_eye, fore= self.opt.flag_fore, tone=False
)
list_gpmm_render = gpmm_face_replace(list_image, list_gpmm_render, list_gpmm_render_mask)
"""
************************************ Visualization or Testing *****************************
"""
# render visual
list_gpmm_render_shade, _, _ = decoder_renderColorMesh( # gpmm_vertexShade: (0, Nan)
self.opt, self.h_lrgp, list_gpmm_vertex, list_gpmm_vertexNormal, list_gpmm_vertexShade,
self.gpmm_frustrum, list_gpmm_mv, list_gpmm_eye, fore= self.opt.flag_fore, tone=False
)
dict_intermedate_common['3dmm_render_shade'] = list_gpmm_render_shade
# # main 3 view
# gpmm_main_ext, gpmm_main_proj, gpmm_main_mv, gpmm_main_eye = \
# build_train_graph_3dmm_camera(self.intrinsics_single, self.defined_pose_main)
# gpmm_render_tar_main, _, _ = decoder_renderColorMesh(
# opt, self.h_lrgp, gpmm_vertex, gpmm_vertexNormal, gpmm_vertexColorOri, gpmm_frustrum,
# gpmm_main_mv, gpmm_main_eye)
"""
Weighted Loss
"""
if list_lm2d_gt is not None:
# loss:reg
gpmm_regular_shape_loss = compute_3dmm_regular_l2_loss(list_gpmm)
gpmm_regular_shape_loss += 0.8 * compute_3dmm_regular_l2_loss(list_gpmm_exp)
gpmm_regular_color_loss = 0.0017 * compute_3dmm_regular_l2_loss(list_gpmm_color)
gpmm_lm_loss = compute_lm_eul_square_loss(list_lm2d, list_lm2d_gt, self.lm2d_weight) # clean
gpmm_pixel_loss, list_render_loss_error = \
compute_3dmm_render_eul_masknorm_skin_loss(list_gpmm_render, list_gpmm_render_mask, list_skin,
list_image)
dict_intermedate_common['3dmm_render'] = list_gpmm_render
dict_intermedate_common['3dmm_render_mask'] = list_gpmm_render_mask
dict_intermedate_common['3dmm_render_tri_id'] = list_gpmm_render_tri_ids
dict_intermedate_common['3dmm_render_loss_heat'] = list_render_loss_error
"""
************************************ Identity ********************************************
"""
list_gpmm_render_id, list_image_id, gpmm_render_align, image_align = \
decoder_similar(self.opt, self.defined_lm_facenet_align, list_gpmm_render, list_image, list_lm2d,
list_lm2d_gt)
gpmm_id_loss, _ = compute_3dmm_id_cos_loss(list_image_id, list_gpmm_render_id)
dict_intermedate_common['id_render'] = list_gpmm_render_id
dict_intermedate_common['id_image'] = list_image_id
dict_intermedate_common['id_render_align'] = gpmm_render_align
dict_intermedate_common['id_image_align'] = image_align
"""
************************************ Depthmap *********************************************
"""
list_gpmm_depthmap, _ \
= decoder_depth(self.opt, self.h_lrgp, list_gpmm_vertex, self.gpmm_frustrum, list_gpmm_ext,
list_gpmm_mv,
list_gpmm_eye)
dict_intermedate_common['3dmm_depthmap'] = list_gpmm_depthmap
# dict_intermedate_common['3dmm_depthmap_mask'] = list_gpmm_depthmap_mask
# dict_intermedate_common['3dmm_depthmap_min'] = list_gpmm_depthmap_min
# dict_intermedate_common['3dmm_depthmap_max'] = list_gpmm_depthmap_max
gpmm_regular_shape_loss = gpmm_regular_shape_loss / (self.opt.num_source + 1)
gpmm_regular_color_loss = gpmm_regular_color_loss / (self.opt.num_source + 1)
gpmm_lm_loss = gpmm_lm_loss / (self.opt.num_source + 1)
gpmm_pixel_loss = gpmm_pixel_loss / (self.opt.num_source + 1)
gpmm_id_loss = gpmm_id_loss / (self.opt.num_source + 1)
dict_loss_common['reg_shape_loss'] = gpmm_regular_shape_loss
dict_loss_common['reg_color_loss'] = gpmm_regular_color_loss
dict_loss_common['lm2d_loss'] = gpmm_lm_loss
dict_loss_common['render_loss'] = gpmm_pixel_loss
dict_loss_common['id_loss'] = gpmm_id_loss
loss_common = tf.constant(0.0)
loss_common += self.opt.gpmm_regular_shape_loss_weight * gpmm_regular_shape_loss
loss_common += self.opt.gpmm_regular_color_loss_weight * gpmm_regular_color_loss
if self.opt.gpmm_lm_loss_weight > 0:
loss_common += self.opt.gpmm_lm_loss_weight * gpmm_lm_loss
if self.opt.gpmm_pixel_loss_weight > 0:
loss_common += self.opt.gpmm_pixel_loss_weight * gpmm_pixel_loss
if self.opt.gpmm_id_loss_weight:
loss_common += self.opt.gpmm_id_loss_weight * gpmm_id_loss
dict_loss_common['loss_common'] = loss_common
return dict_loss_common, dict_intermedate_common
def build_decoderMGC(self, flag_sgl_mul, list_image, list_lm2d_gt, dict_inter_common):
"""
:param list_image:
:param list_lm2d_gt:
:param dict_intermedate_common:
:return:
"""
# input
#relative pose from target to source
list_rel_poses = decoder_warppose(self.opt, dict_inter_common['pred_6dof_pose'])
#
list_covisible_map = decoder_covisible_map(self.opt, self.h_lrgp, self.gpmm_frustrum, dict_inter_common)
# inter
list_tarTile_image = []
list_tarTile_depth = []
list_viewSyn_image = []
list_viewSyn_depth = []
list_viewSyn_mask = []
list_viewSyn_image_masked = []
list_render_mask = []
list_viewSyn_ssim_mask = []
# output
dict_loss_common = dict()
dict_intermedate_common = dict()
# Start loop all source view
curr_tar_image = list_image[0]
curr_tar_depths = dict_inter_common['3dmm_depthmap'][0]
for i in range(self.opt.num_source):
list_tarTile_image.append(curr_tar_image)
list_tarTile_depth.append(curr_tar_depths)
# Inverse warp the source image to the target image frame
with tf.name_scope("warp"):
curr_src_image = list_image[1 + i] # careful of [tar, src_all]
curr_source_depth = dict_inter_common['3dmm_depthmap'][1 + i]
warp_pose = list_rel_poses[i]
# view synthetic
# curr_src_image = tf.Print(curr_src_image, [tf.reduce_mean(curr_src_image)], message='curr_src_image')
# curr_tar_depths = tf.Print(curr_tar_depths, [tf.reduce_mean(curr_tar_depths)], message='curr_tar_depths')
# curr_source_depth = tf.Print(curr_source_depth, [tf.reduce_mean(curr_source_depth)], message='curr_source_depth')
curr_viewSyn_image, curr_viewSyn_depth, viewSyn_mask = projective_inverse_warp(
curr_src_image, tf.squeeze(curr_tar_depths, axis=-1), curr_source_depth,
warp_pose, self.intrinsics_single[:, :, :], is_vec=True)
#
# curr_viewSyn_image = tf.Print(curr_viewSyn_image,
# [tf.reduce_sum(curr_viewSyn_image), tf.reduce_sum(curr_tar_depths-852)], message='warp')
#
list_viewSyn_image.append(curr_viewSyn_image)
list_viewSyn_depth.append(curr_viewSyn_depth)
# covisible map
view_syn_mask = viewSyn_mask * list_covisible_map[i]
#view_syn_mask = tf.Print(view_syn_mask, [tf.reduce_sum(view_syn_mask)], message='view_syn_mask')
# cut bg
if 0:
depthRender_min = dict_inter_common['3dmm_depthmap_min'][1 + i]
depthRender_max = dict_inter_common['3dmm_depthmap_max'][1 + i]
l_one = tf.ones_like(curr_viewSyn_depth)
l_zero = tf.zeros_like(curr_viewSyn_depth)
depthValid_mask = tf.where(tf.greater(viewSyn_depth, depthRender_max), x=l_zero, y=l_one)
#view_syn_mask = view_syn_mask * depthValid_mask
# mask dict_intermedate_common['3dmm_render_mask']
list_viewSyn_mask.append(view_syn_mask)
list_render_mask.append(dict_inter_common['3dmm_render_mask'][0])
curr_viewSyn_image_mask = curr_viewSyn_image * view_syn_mask # (0, 1)
list_viewSyn_image_masked.append(curr_viewSyn_image_mask)
# 1.pixel
ssim_mask = slim.avg_pool2d(view_syn_mask, 3, 1, 'VALID') # TODO: Right SSIM
list_viewSyn_ssim_mask.append(ssim_mask)
# 2.depth
# 3.epipolar
dict_intermedate_common['list_viewSyn_image'] = list_viewSyn_image
dict_intermedate_common['list_viewSyn_mask'] = list_viewSyn_mask
dict_intermedate_common['list_viewSyn_image_masked'] = list_viewSyn_image_masked
# 1. pixel loss
# photo loss
list_curr_viewSyn_pixel_error, list_curr_viewSyn_pixel_error_visual = \
compute_pixel_eul_loss_list(list_viewSyn_image_masked, list_viewSyn_mask, list_render_mask, list_tarTile_image)
flag_sgl_mul_curr = flag_sgl_mul
flag_sgl_mul_curr = tf.clip_by_value(flag_sgl_mul_curr, 0.0, 1.0)
pixel_loss = combine_flag_sgl_mul_loss(list_curr_viewSyn_pixel_error, flag_sgl_mul_curr)
dict_intermedate_common['list_curr_viewSyn_pixel_error_visual'] = list_curr_viewSyn_pixel_error_visual
# ssim loss
list_curr_viewSyn_ssim_error = compute_ssim_loss_list(list_viewSyn_image, list_tarTile_image, list_viewSyn_ssim_mask)
flag_sgl_mul_curr = flag_sgl_mul
flag_sgl_mul_curr = tf.clip_by_value(flag_sgl_mul_curr, 0.0, 1.0)
ssim_loss = combine_flag_sgl_mul_loss(list_curr_viewSyn_ssim_error, flag_sgl_mul_curr)
# 2. depth loss
"""
depth: range(0, NAN+)
proj_mask: range(0, 1)
"""
list_viewSyn_depth_alinged = decoder_align_depthMap(self.opt, list_tarTile_depth, list_viewSyn_depth, list_viewSyn_mask)
list_curr_viewSyn_depth_error, list_curr_viewSyn_depth_visual = \
compute_depthmap_l1_loss_list(list_viewSyn_depth_alinged, list_viewSyn_mask, list_tarTile_depth) # TODO: bug!!!
flag_sgl_mul_curr = flag_sgl_mul
flag_sgl_mul_curr = tf.clip_by_value(flag_sgl_mul_curr, 0.0, 1.0)
depth_loss = combine_flag_sgl_mul_loss(list_curr_viewSyn_depth_error, flag_sgl_mul_curr, flag_batch_norm=False)
dict_intermedate_common['list_viewSyn_depth_alinged'] = list_viewSyn_depth_alinged
dict_intermedate_common['list_curr_viewSyn_depth_visual'] = list_curr_viewSyn_depth_visual
# 3. Eipipolar loss (fundamental matrix)
list_epiLoss_batch, list_reprojLoss_batch, mgc_epi_lines, mgc_epi_distances = compute_match_loss_list(
list_lm2d_gt, dict_inter_common['3dmm_depthmap'][0], list_rel_poses, self.intrinsics_single
)
flag_sgl_mul_curr = flag_sgl_mul - 1
flag_sgl_mul_curr = tf.clip_by_value(flag_sgl_mul_curr, 0.0, 1.0)
epi_loss = combine_flag_sgl_mul_loss(list_epiLoss_batch, flag_sgl_mul_curr, flag_batch_norm=False)
dict_intermedate_common['mgc_epi_lines'] = mgc_epi_lines
dict_intermedate_common['mgc_epi_distances'] = mgc_epi_distances
"""
Weighted Loss
"""
loss_multiView = tf.constant(0.0)
if self.opt.photom_weight > 0:
loss_multiView += self.opt.photom_weight * pixel_loss
dict_loss_common['pixel_loss'] = pixel_loss
else:
dict_loss_common['pixel_loss'] = tf.constant(0.0)
if self.opt.ssim_weight > 0:
loss_multiView += self.opt.ssim_weight * ssim_loss
dict_loss_common['ssim_loss'] = ssim_loss
else:
dict_loss_common['ssim_loss'] = tf.constant(0.0)
if self.opt.epipolar_weight > 0:
loss_multiView += self.opt.epipolar_weight * epi_loss
dict_loss_common['epi_loss'] = epi_loss
else:
dict_loss_common['epi_loss'] = tf.constant(0.0)
if self.opt.depth_weight > 0:
loss_multiView += self.opt.depth_weight * depth_loss
dict_loss_common['depth_loss'] = depth_loss
else:
dict_loss_common['depth_loss'] = tf.constant(0.0)
dict_loss_common['loss_mgc'] = loss_multiView
# inter
dict_intermedate_common['list_rel_poses'] = list_rel_poses
return dict_loss_common, dict_intermedate_common
def build_train_graph_train_op(self):
opt = self.opt
with tf.name_scope("train_op"):
#print('Global variables:', tf.global_variables())
train_vars = [var for var in tf.trainable_variables()]
#print('Optimized variables:', train_vars)
#print("Global variables number: %d" % (len(tf.global_variables())))
print("Optimized variables number: %d" % (len(train_vars)))
"""
Clean
"""
train_vars = [(var) for var in train_vars if var.name.find('InceptionResnetV1') == -1]
#print("Optimized variables number(After clean forward var): %d" % (len(train_vars)))
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
optim0 = tf.train.AdamOptimizer(1.0 * opt.learning_rate, opt.beta1) # face+pose: no constrain
self.train_op = []
if len(train_vars) != 0:
#self.total_loss = tf.Print(self.total_loss, [self.total_loss], message='self.total_loss', summarize=4)
self.grads_and_vars = optim0.compute_gradients(self.total_loss, var_list=train_vars)
for grad, var in self.grads_and_vars:
if grad is None:
print("Optimized variables grad is None: ", var)
self.grads_and_vars = [(grad, var) for grad, var in self.grads_and_vars if grad is not None]
sum_grads = [tf.reduce_sum(grad) for grad, var in self.grads_and_vars]
self.total_grad = tf.reduce_sum(sum_grads)
self.train_op.append(optim0.apply_gradients(self.grads_and_vars))
self.incr_global_step = tf.assign(self.global_step, self.global_step + 1)
def collect_summaries(self):
opt = self.opt
# scalar
tf.summary.scalar("total_loss", self.total_loss)
tf.summary.scalar("common_loss", self.common_loss)
tf.summary.scalar("ga_loss", self.ga_loss)
# common
if opt.gpmm_regular_shape_loss_weight > 0:
tf.summary.scalar("gpmm_regular_shape_loss", self.gpmm_regular_shape_loss)
if opt.gpmm_regular_color_loss_weight > 0:
tf.summary.scalar("gpmm_regular_color_loss", self.gpmm_regular_color_loss)
if opt.gpmm_lm_loss_weight > 0:
tf.summary.scalar("gpmm_lm_loss", self.gpmm_lm_loss)
if opt.gpmm_pixel_loss_weight > 0:
tf.summary.scalar("gpmm_pixel_loss", self.gpmm_pixel_loss)
if opt.gpmm_id_loss_weight:
tf.summary.scalar("gpmm_id_loss", self.gpmm_id_loss)
# multi-view
if opt.ssim_weight > 0:
tf.summary.scalar("ssim_loss", self.ssim_loss)
if opt.photom_weight > 0:
tf.summary.scalar("pixel_loss", self.pixel_loss)
if opt.epipolar_weight > 0:
tf.summary.scalar("epipolar_loss", self.epipolar_loss)
if opt.depth_weight > 0:
tf.summary.scalar("depth_loss", self.depth_loss)
if 1:
"""
image
"""
self.list_img_tar = deprocess_image_series(self.list_tar_image)
self.list_img_src = deprocess_image_series(self.list_src_image)
"""
image + landmark
"""
list_img_lmDraw_tar = draw_landmark_image(self.list_tar_image, self.lm2d_tar, opt.img_height, opt.img_width, color=1)
list_img_lmDraw_tar = draw_landmark_image(list_img_lmDraw_tar, self.list_lm2d_gt_tar, opt.img_height, opt.img_width, color=2)
list_img_lmDraw_src = draw_landmark_image(self.list_src_image, self.lm2d_src, opt.img_height, opt.img_width, color=1)
list_img_lmDraw_src = draw_landmark_image(list_img_lmDraw_src, self.list_lm2d_gt_src, opt.img_height, opt.img_width, color=2)
"""
render main pose
"""
#tf.summary.image('gpmm_render_tar_main', deprocess_image(self.gpmm_render_tar_main[0]))
"""
render derivatives
"""
# shade
list_shade_tar = deprocess_image_series(self.gpmm_render_shade_tar)
list_shade_src = deprocess_image_series(self.gpmm_render_shade_src)
# mask
list_render_mask_tar = deprocess_gary_image_series(self.gpmm_render_mask_tar)
list_render_mask_src = deprocess_gary_image_series(self.gpmm_render_mask_src)
# skin
list_skin_tar = deprocess_gary_image_series(self.list_tar_skin)
list_skin_src = deprocess_gary_image_series(self.list_src_skin)
"""
render
"""
# tar render and ori image
self.list_render_image_tar = deprocess_image_series(self.gpmm_render_tar)
self.list_render_image_src = deprocess_image_series(self.gpmm_render_src)
list_render_loss_tar = deprocess_image_series(self.list_render_loss_error_tar)
list_render_loss_src = deprocess_image_series(self.list_render_loss_error_src)
# Render
# 1
show_img_imgLM_tar = concate_image_series(self.list_img_tar, list_img_lmDraw_tar, axis=1)
show_img_imgLM_src = concate_image_series(self.list_img_src, list_img_lmDraw_src, axis=1)
# 2
show_light_mask_tar = concate_image_series(list_skin_tar, list_shade_tar, axis=1)
show_light_mask_src = concate_image_series(list_skin_src, list_shade_src, axis=1)
# fusion
render_12_tar = concate_image_series(show_img_imgLM_tar, self.list_render_image_tar, axis=1)
render_23_tar = concate_image_series(show_light_mask_tar, list_render_loss_tar, axis=1)
render_123_tar = concate_image_series(render_12_tar, render_23_tar, axis=2)
render_12_src = concate_image_series(show_img_imgLM_src, self.list_render_image_src, axis=1)
render_23_src = concate_image_series(show_light_mask_src, list_render_loss_src, axis=1)
render_123_src = concate_image_series(render_12_src, render_23_src, axis=2)
self.show_gpmm_render_all = concate_semi_image_series(render_123_tar, render_123_src)
tf.summary.image('gpmm_render_all', self.show_gpmm_render_all)
"""
epipolar:
image + consistance
"""
self.list_img_lmConsistDraw_tar = draw_landmark_image(self.list_tar_image, self.gpmm_consist_pixel_tar, opt, color=1)
self.list_img_lmConsistDraw_src = draw_landmark_image(self.list_src_image, self.gpmm_consist_pixel_src, opt, color=1)
# epipolar
list_img_lmConsistDraw = draw_landmark_image(self.list_image, self.list_lm2d_gt, opt.img_height, opt.img_width, color=1)
# photematric
list_geo_proj_img_src = deprocess_image_series(self.dict_inter_mgc['list_viewSyn_image'])
list_geo_proj_img_fore_src = deprocess_image_series(self.dict_inter_mgc['list_viewSyn_image_masked'])
list_geo_proj_mask_src = deprocess_gary_image_series(self.dict_inter_mgc['list_viewSyn_mask'])
list_geo_proj_img_error_src = deprocess_image_series(self.dict_inter_mgc['list_curr_viewSyn_pixel_error_visual'])
# 1
show_geo_proj_img_tar = concate_image_series(self.list_tar_image, self.list_tar_image, axis=1)
show_geo_proj_img_tar = deprocess_image_series(show_geo_proj_img_tar)
show_geo_proj_img_src = concate_image_series(list_geo_proj_img_src, list_geo_proj_img_fore_src, axis=1)
show_geo_proj_img_me_tar = concate_image_series(self.list_tar_image, self.list_tar_image, axis=1)
show_geo_proj_img_me_tar = deprocess_image_series(show_geo_proj_img_me_tar)
show_geo_proj_img_me_src = concate_image_series(list_geo_proj_mask_src, list_geo_proj_img_error_src, axis=1)
# 2
show_geo_proj_tar = concate_image_series(show_geo_proj_img_tar, show_geo_proj_img_me_tar, axis=1)
show_geo_proj_src = concate_image_series(show_geo_proj_img_src, show_geo_proj_img_me_src, axis=1)
# 3
show_geo_epi_tar = concate_image_series(list_img_lmConsistDraw[0:1], show_geo_proj_tar, axis=1)
show_geo_epi_src = concate_image_series(list_img_lmConsistDraw[1:], show_geo_proj_src, axis=1)
# fusion
self.show_proj_all = insert_semi_image_series(show_geo_epi_tar, show_geo_epi_src)
tf.summary.image("show_warp_proj_all", self.show_proj_all)
def train_pre(self, opt):
self.opt = opt
"""
1.continue training
2.pretrain model
"""
restore_vars = tf.global_variables()
self.restorer = tf.train.Saver(restore_vars, max_to_keep=None)
self.saver = tf.train.Saver(tf.global_variables(), max_to_keep=None)
# pretrain model
if opt.ckpt_face_pretrain is not None:
face_variables_to_restore = []
face_variables_to_restore_all = slim.get_model_variables("resnet_v1_50")
for var in face_variables_to_restore_all:
if var.op.name.find('logits') != -1 or var.op.name.find('predictions') != -1:
pass
elif var.op.name.find('block1_final') != -1:
pass
else:
face_variables_to_restore.append(var)
print("Face network pretrain, number: %d" % (len(face_variables_to_restore)))
self.face_restorer = slim.assign_from_checkpoint_fn(opt.ckpt_face_pretrain, face_variables_to_restore, True)
if opt.ckpt_face_id_pretrain is not None:
# 1
# face_variables_to_restore = slim.get_model_variables("InceptionResnetV1")
# print("ID network pretrain, number: %d" % (len(face_variables_to_restore)))
# self.face_id_restorer = slim.assign_from_checkpoint_fn(opt.ckpt_face_id_pretrain, face_variables_to_restore, True)
# 2
face_variables_to_restore = tf.model_variables("InceptionResnetV1")
print("Identity variables number: %d" % (len(face_variables_to_restore)))
#saver = tf_render.train.Saver([var for var in test_var])
self.face_id_restorer = tf.train.Saver(face_variables_to_restore)
def train(self, opt):
# FLAGS
assert opt.num_source == opt.seq_length - 1
"""
Build Graph
"""
# all the data directly stored in the self.Graph
data_loader, batch_sample = self.build_train_graph_dataLoader()
#with tf.device('/cpu:0'):
self.build_train_graph()
#
self.collect_summaries()
#
with tf.name_scope("parameter_count"):
parameter_count = \
tf.reduce_sum([tf.reduce_prod(tf.shape(v)) for v in tf.trainable_variables()])
# model
self.train_pre(opt)
"""
Start Training
"""
# Initialize variables
sv = tf.train.Supervisor(logdir=opt.checkpoint_dir,
save_summaries_secs=0,
saver=None)
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.allocator_type = 'BFC' # A "Best-fit with coalescing" algorithm, simplified from a version of dlmalloc.
#config.gpu_options.per_process_gpu_memory_fraction = 0.8
config.gpu_options.allow_growth = True
with sv.managed_session(config=config) as sess:
print("Parameter count =", sess.run(parameter_count))
"""
Functional Define
"""
# continue train
if opt.continue_train:
if opt.init_ckpt_file is None:
checkpoint = tf.train.latest_checkpoint(opt.checkpoint_dir)
else:
checkpoint = opt.init_ckpt_file
print("Resume training from previous checkpoint: %s" % checkpoint)
self.restorer.restore(sess, checkpoint)
#
dic_ckpt, name_ckpt = os.path.split(checkpoint)
gs = name_ckpt.split('-')[1].split('.')[0]
#
# self.global_step = tf.Variable(0, name='global_step', trainable=False)
step_start = int(gs) + 1
else:
# pretrain model
if opt.ckpt_face_pretrain is not None:
self.face_restorer(sess)
step_start = 0 + 1
if opt.ckpt_face_id_pretrain is not None:
self.face_id_restorer.restore(sess, opt.ckpt_face_id_pretrain)
# init global
#sess.run(tf_render.global_variables_initializer())
"""
Loop Start
"""
start_time = time.time()
# """
# Data init
# """
sess.graph.finalize()
for step in range(step_start, opt.max_steps+1):
"""
Data init
"""
if step == 1 or (opt.dataset_name_list == 'train' and step % self.steps_per_epoch == 0) or (opt.continue_train and step == step_start):
global_all_file_list = data_loader.format_file_list(opt.dataset_dir, opt.dataset_name_list)
self.steps_per_epoch = data_loader.steps_per_epoch # Step count
data_loader.init_data_pipeline(sess, batch_sample, global_all_file_list)
print("Update dataloader list: (step %d in all %d)" % (step, self.steps_per_epoch))
"""
Define fetch
"""
fetches = {
"total_loss": self.total_loss,
#"total_grad": self.total_grad,
"train": self.train_op,
"global_step": self.global_step,
"incr_global_step": self.incr_global_step
}
if step % opt.summary_freq == 0:
fetches["ga_loss"] = self.ga_loss
fetches["pixel_loss"] = self.pixel_loss
fetches["ssim_loss"] = self.ssim_loss
fetches["depth_loss"] = self.depth_loss
fetches["epipolar_loss"] = self.epipolar_loss
fetches["gpmm_pixel_loss"] = self.gpmm_pixel_loss
fetches["gpmm_lm_loss"] = self.gpmm_lm_loss
fetches["gpmm_id_loss"] = self.gpmm_id_loss
fetches["gpmm_reg_shape_loss"] = self.gpmm_regular_shape_loss
fetches["gpmm_reg_color_loss"] = self.gpmm_regular_color_loss
fetches["summary"] = sv.summary_op
"""
********************************************* Start Trainning *********************************************
"""
results = sess.run(fetches)
gs = results["global_step"]
if step % opt.summary_freq == 0:
sv.summary_writer.add_summary(results["summary"], gs)
train_epoch = math.ceil(gs / self.steps_per_epoch)
train_step = gs - (train_epoch - 1) * self.steps_per_epoch
print("Epoch %2d: %5d/%5d (time: %4.4f), Step %d:"
% (train_epoch, train_step, gs, (time.time() - start_time) / opt.summary_freq, step))
print("total: [%.4f]" % (results["total_loss"]))
print("ga/pixel/ssim/depth/epipolar loss: [%.4f/%.4f/%.4f/%.4f/%.4f]" % (
results["ga_loss"], results["pixel_loss"], results["ssim_loss"], results["depth_loss"], results["epipolar_loss"]))
print("(weight)ga/pixel/ssim/depth/epipolar loss: [%.4f/%.4f/%.4f/%.4f/%.4f]" % (
results["ga_loss"] * opt.MULTIVIEW_weight,
results["pixel_loss"] * (1-opt.ssim_weight),
results["ssim_loss"] * opt.ssim_weight,
results["depth_loss"] * opt.depth_weight,
results["epipolar_loss"] * opt.epipolar_weight)
)
# 3dmm loss
print("mm_pixel/mm_lm/mm_id/mm_reg_s/mm_reg_c loss: [%.4f/%.4f/%.4f/%.4f/%.4f]" % (
results["gpmm_pixel_loss"], results["gpmm_lm_loss"], results["gpmm_id_loss"],
results["gpmm_reg_shape_loss"], results["gpmm_reg_color_loss"]))
print("(weight)mm_pixel/mm_lm/mm_id/mm_reg_s/mm_reg_c loss: [%.4f/%.4f/%.4f/%.4f/%.4f]\n" % (
results["gpmm_pixel_loss"] * opt.gpmm_pixel_loss_weight,
results["gpmm_lm_loss"] * opt.gpmm_lm_loss_weight,
results["gpmm_id_loss"] * opt.gpmm_id_loss_weight,
results["gpmm_reg_shape_loss"] * opt.gpmm_regular_shape_loss_weight,
results["gpmm_reg_color_loss"] * opt.gpmm_regular_color_loss_weight))
start_time = time.time()
"""
Save model
"""
if gs % opt.save_freq == 0 and step >= opt.min_steps:
self.save(sess, opt.checkpoint_dir, gs)
def save(self, sess, checkpoint_dir, step):
model_name = 'model'
print(" [*] Saving checkpoint step %d to %s..." % (step, checkpoint_dir))
self.saver.save(sess, os.path.join(checkpoint_dir, model_name), global_step=step)
"""
Test
"""
def set_constant_test(self):
# cam
self.set_constant_node()
# multi pose
defined_pose_left = tf.constant([-0.000000, -0.392699, -3.141593, 37.504993, 9.1053238, 4994.3359], shape=[1, 6])
self.defined_pose_left = tf.tile(defined_pose_left, multiples=[self.batch_size, 1])
defined_pose_right = tf.constant([-0.000000, 0.392699, -3.141593, -37.341232, 9.1053238, 4994.3359], shape=[1, 6])
self.defined_pose_right = tf.tile(defined_pose_right, multiples=[self.batch_size, 1])
self.define_pose = tf.stack([self.defined_pose_left, self.defined_pose_main, self.defined_pose_right], axis=0)
# print color
gpmm_vertexColor_gary = tf.constant([0.7529, 0.7529, 0.7529], shape=[1, 1, 3])
#gpmm_vertexColor_gary = tf.constant([0.5, 0.5, 0.5], shape=[1, 1, 3])
gpmm_vertexColor_gary = tf.tile(gpmm_vertexColor_gary, [self.batch_size, self.h_lrgp.h_curr.point3d_mean_np.shape[0], 1])
self.list_vertexColor_gary = [gpmm_vertexColor_gary]
def build_test_graph(self, opt, img_height, img_width, batch_size=1):
self.opt = opt
self.img_height = img_height
self.img_width = img_width
self.batch_size = batch_size
self.rank = self.opt.gpmm_rank
# start
input_uint8 = tf.placeholder(tf.uint8, [self.batch_size, self.img_height, self.img_width, 3], name='pl_input')
input_float = preprocess_image(input_uint8)
self.list_input_float = [input_float]
# setting
self.set_constant_test()
# single view
list_coeffALL = pred_encoder_coeff_light(self.opt, self.defined_pose_main, self.list_input_float, is_training=False)
dict_loss_common, dict_intermedate_common = \
self.build_decoderCommon(list_coeffALL, self.list_input_float)
self.dict_inter_comm = dict_intermedate_common
self.dict_loss_common = dict_loss_common
# multi-level
self.list_vertex, self.list_vertexNormal, self.list_vertexColor, self.list_vertexShade, self.list_vertexColorOri = \
decoder_colorMesh_test(self.h_lrgp, self.dict_inter_comm, exp=True)
# visual
if opt.flag_visual:
self.build_testVisual_graph()
def build_testVisual_graph(self):
opt = self.opt
self.gpmm_render_mask = []
self.overlay_255 = []
self.overlayTex_255 = []
self.overlayLight_255 = []
self.overlayGeo_255 = []
self.overlayMain_255 = []
self.overlayTexMain_255 = []
self.overlayLightMain_255 = []
self.overlayGeoMain_255 = []
self.apper_mulPose_255 = []
for v in range(len(self.list_vertex)):
"""
0. single visual: overlay(color + texture + geometry + illumination)
"""
color_overlay_single = [self.list_vertexColor[0],
self.list_vertexColorOri[0],
self.list_vertexShade[0]]
overlay_single = []
for i in range(len(color_overlay_single)):
# render
texture_color = color_overlay_single[i]
gpmm_render, gpmm_render_mask_v, _ = decoder_renderColorMesh(
opt, self.h_lrgp, self.list_vertex[0], self.list_vertexNormal[0], texture_color,
self.gpmm_frustrum, self.dict_inter_comm['pred_cam_mv'][v], self.dict_inter_comm['pred_cam_eye'][v], fore=opt.flag_fore, tone=False
)
gpmm_render = gpmm_face_replace(self.list_input_float[v], gpmm_render, gpmm_render_mask_v)
gpmm_render = tf.clip_by_value(gpmm_render, 0.0, 1.0)
#gpmm_render = tf.Print(gpmm_render, [gpmm_render], message='gpmm_render')
#
gpmm_render_visual = tf.image.convert_image_dtype(gpmm_render[0], dtype=tf.uint8)
overlay_single.append(gpmm_render_visual)
#
self.gpmm_render_mask.append(gpmm_render_mask_v[0])
self.overlay_255.append(overlay_single[0])
self.overlayTex_255.append(overlay_single[1])
self.overlayLight_255.append(overlay_single[2])
# single visual geo
overlayGeo, _, _ = decoder_renderColorMesh_gary(