forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
net_printer.py
422 lines (348 loc) · 12.5 KB
/
net_printer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
## @package net_printer
# Module caffe2.python.net_printer
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.proto.caffe2_pb2 import OperatorDef, NetDef
from caffe2.python.checkpoint import Job
from caffe2.python.core import Net, ExecutionStep, Plan
from caffe2.python.task import Task, TaskGroup, WorkspaceType, TaskOutput
from collections import defaultdict
from contextlib import contextmanager
from copy import copy
from future.utils import viewkeys
from itertools import chain
from six import binary_type, text_type
class Visitor(object):
@classmethod
def register(cls, Type):
if not(hasattr(cls, 'visitors')):
cls.visitors = {}
else:
assert Type not in cls.visitors, \
'{} already registered!'.format(Type)
def _register(func):
cls.visitors[Type] = func
return func
return _register
def __call__(self, obj, *args, **kwargs):
if obj is None:
return
Type = type(obj)
if Type not in self.__class__.visitors:
raise TypeError('%s: unsupported object type: %s' % (
self.__class__.__name__, Type))
func = self.__class__.visitors[Type]
return func(self, obj, *args, **kwargs)
class Analyzer(Visitor):
PREFIXES_TO_IGNORE = {'distributed_ctx_init'}
def __init__(self):
self.workspaces = defaultdict(lambda: defaultdict(lambda: 0))
self.workspace_ctx = []
@property
def workspace(self):
return self.workspace_ctx[-1]
@contextmanager
def set_workspace(self, node=None, ws=None, do_copy=False):
if ws is not None:
ws = ws
elif node is not None:
ws = self.workspaces[str(node)]
else:
ws = self.workspace
if do_copy:
ws = copy(ws)
self.workspace_ctx.append(ws)
yield ws
del self.workspace_ctx[-1]
def define_blob(self, blob):
self.workspace[blob] += 1
def need_blob(self, blob):
if any(blob.startswith(p) for p in Analyzer.PREFIXES_TO_IGNORE):
return
assert blob in self.workspace, 'Blob undefined: %s' % blob
@Analyzer.register(OperatorDef)
def analyze_op(analyzer, op):
for x in op.input:
analyzer.need_blob(x)
for x in op.output:
analyzer.define_blob(x)
@Analyzer.register(Net)
def analyze_net(analyzer, net):
for x in net.Proto().op:
analyzer(x)
@Analyzer.register(ExecutionStep)
def analyze_step(analyzer, step):
proto = step.Proto()
with analyzer.set_workspace(do_copy=proto.create_workspace):
if proto.report_net:
with analyzer.set_workspace(do_copy=True):
analyzer(step.get_net(proto.report_net))
all_new_blobs = set()
substeps = step.Substeps() + [step.get_net(n) for n in proto.network]
for substep in substeps:
with analyzer.set_workspace(
do_copy=proto.concurrent_substeps) as ws_in:
analyzer(substep)
if proto.should_stop_blob:
analyzer.need_blob(proto.should_stop_blob)
if proto.concurrent_substeps:
new_blobs = set(viewkeys(ws_in)) - set(viewkeys(analyzer.workspace))
assert len(all_new_blobs & new_blobs) == 0, (
'Error: Blobs created by multiple parallel steps: %s' % (
', '.join(all_new_blobs & new_blobs)))
all_new_blobs |= new_blobs
for x in all_new_blobs:
analyzer.define_blob(x)
@Analyzer.register(Task)
def analyze_task(analyzer, task):
# check that our plan protobuf is not too large (limit of 64Mb)
step = task.get_step()
plan = Plan(task.node)
plan.AddStep(step)
proto_len = len(plan.Proto().SerializeToString())
assert proto_len < 2 ** 26, (
'Due to a protobuf limitation, serialized tasks must be smaller '
'than 64Mb, but this task has {} bytes.' % proto_len)
is_private = task.workspace_type() != WorkspaceType.GLOBAL
with analyzer.set_workspace(do_copy=is_private):
analyzer(step)
@Analyzer.register(TaskGroup)
def analyze_task_group(analyzer, tg):
for task in tg.tasks_by_node().tasks():
with analyzer.set_workspace(node=task.node):
analyzer(task)
@Analyzer.register(Job)
def analyze_job(analyzer, job):
analyzer(job.init_group)
analyzer(job.epoch_group)
def analyze(obj):
"""
Given a Job, visits all the execution steps making sure that:
- no undefined blobs will be found during excution
- no blob with same name is defined in concurrent steps
"""
Analyzer()(obj)
class Text(object):
def __init__(self):
self._indent = 0
self._lines_in_context = [0]
self.lines = []
@contextmanager
def context(self, text):
if text is not None:
self.add('with %s:' % text)
self._indent += 4
self._lines_in_context.append(0)
yield
if text is not None:
if self._lines_in_context[-1] == 0:
self.add('pass')
self._indent -= 4
del self._lines_in_context[-1]
def add(self, text):
self._lines_in_context[-1] += 1
self.lines.append((' ' * self._indent) + text)
def __str__(self):
return '\n'.join(self.lines)
class Printer(Visitor, Text):
def __init__(self, factor_prefixes=False, c2_syntax=True):
super(Visitor, self).__init__()
super(Text, self).__init__()
self.factor_prefixes = factor_prefixes
self.c2_syntax = c2_syntax
self.c2_net_name = None
def _sanitize_str(s):
if isinstance(s, text_type):
sanitized = s
elif isinstance(s, binary_type):
sanitized = s.decode('ascii', errors='ignore')
else:
sanitized = str(s)
if len(sanitized) < 64:
return "'%s'" % sanitized
else:
return "'%s'" % sanitized[:64] + '...<+len=%d>' % (len(sanitized) - 64)
def _arg_val(arg):
if arg.HasField('f'):
return str(arg.f)
if arg.HasField('i'):
return str(arg.i)
if arg.HasField('s'):
return _sanitize_str(arg.s)
if arg.floats:
return str(list(arg.floats))
if arg.ints:
return str(list(arg.ints))
if arg.strings:
return str([_sanitize_str(s) for s in arg.strings])
return '[]'
def commonprefix(m):
"Given a list of strings, returns the longest common prefix"
if not m:
return ''
s1 = min(m)
s2 = max(m)
for i, c in enumerate(s1):
if c != s2[i]:
return s1[:i]
return s1
def format_value(val):
if isinstance(val, list):
return '[%s]' % ', '.join("'%s'" % str(v) for v in val)
else:
return str(val)
def factor_prefix(vals, do_it):
vals = [format_value(v) for v in vals]
prefix = commonprefix(vals) if len(vals) > 1 and do_it else ''
joined = ', '.join(v[len(prefix):] for v in vals)
return '%s[%s]' % (prefix, joined) if prefix else joined
def call(op, inputs=None, outputs=None, factor_prefixes=False):
if not inputs:
inputs = ''
else:
inputs_v = [a for a in inputs if not isinstance(a, tuple)]
inputs_kv = [a for a in inputs if isinstance(a, tuple)]
inputs = ', '.join(
x
for x in chain(
[factor_prefix(inputs_v, factor_prefixes)],
('%s=%s' % kv for kv in inputs_kv),
)
if x
)
call = '%s(%s)' % (op, inputs)
return call if not outputs else '%s = %s' % (
factor_prefix(outputs, factor_prefixes), call)
def format_device_option(dev_opt):
if not dev_opt or not (
dev_opt.device_type or dev_opt.device_id or dev_opt.node_name):
return None
return call(
'DeviceOption',
[dev_opt.device_type, dev_opt.device_id, "'%s'" % dev_opt.node_name])
@Printer.register(OperatorDef)
def print_op(text, op):
args = [(a.name, _arg_val(a)) for a in op.arg]
dev_opt_txt = format_device_option(op.device_option)
if dev_opt_txt:
args.append(('device_option', dev_opt_txt))
if text.c2_net_name:
text.add(call(
text.c2_net_name + '.' + op.type,
[list(op.input), list(op.output)] + args))
else:
text.add(call(
op.type,
list(op.input) + args,
op.output,
factor_prefixes=text.factor_prefixes))
for arg in op.arg:
if arg.HasField('n'):
with text.context('arg: %s' % arg.name):
text(arg.n)
@Printer.register(NetDef)
def print_net_def(text, net_def):
if text.c2_syntax:
text.add(call('core.Net', ["'%s'" % net_def.name], [net_def.name]))
text.c2_net_name = net_def.name
else:
text.add('# net: %s' % net_def.name)
for op in net_def.op:
text(op)
if text.c2_syntax:
text.c2_net_name = None
@Printer.register(Net)
def print_net(text, net):
text(net.Proto())
def _get_step_context(step):
proto = step.Proto()
if proto.should_stop_blob:
return call('loop'), False
if proto.num_iter and proto.num_iter != 1:
return call('loop', [proto.num_iter]), False
if proto.num_concurrent_instances > 1:
return (
call('parallel',
[('num_instances', proto.num_concurrent_instances)]),
len(step.Substeps()) > 1)
concurrent = proto.concurrent_substeps and len(step.Substeps()) > 1
if concurrent:
return call('parallel'), True
if proto.report_net:
return call('run_once'), False
return None, False
@Printer.register(ExecutionStep)
def print_step(text, step):
proto = step.Proto()
step_ctx, do_substep = _get_step_context(step)
with text.context(step_ctx):
if proto.report_net:
with text.context(call('report_net', [proto.report_interval])):
text(step.get_net(proto.report_net))
substeps = step.Substeps() + [step.get_net(n) for n in proto.network]
for substep in substeps:
sub_proto = (
substep.Proto() if isinstance(substep, ExecutionStep) else None)
if sub_proto is not None and sub_proto.run_every_ms:
substep_ctx = call(
'reporter',
[str(substep), ('interval_ms', sub_proto.run_every_ms)])
elif do_substep:
title = (
'workspace'
if sub_proto is not None and sub_proto.create_workspace else
'step')
substep_ctx = call(title, [str(substep)])
else:
substep_ctx = None
with text.context(substep_ctx):
text(substep)
if proto.should_stop_blob:
text.add(call('yield stop_if', [proto.should_stop_blob]))
def _print_task_output(x):
assert isinstance(x, TaskOutput)
return 'Output[' + ', '.join(str(x) for x in x.names) + ']'
@Printer.register(Task)
def print_task(text, task):
outs = ', '.join(_print_task_output(o) for o in task.outputs())
context = [('node', task.node), ('name', task.name), ('outputs', outs)]
with text.context(call('Task', context)):
text(task.get_step())
@Printer.register(TaskGroup)
def print_task_group(text, tg, header=None):
with text.context(header or call('TaskGroup')):
for task in tg.tasks_by_node().tasks():
text(task)
@Printer.register(Job)
def print_job(text, job):
text(job.init_group, 'Job.current().init_group')
text(job.epoch_group, 'Job.current().epoch_group')
with text.context('Job.current().stop_conditions'):
for out in job.stop_conditions:
text.add(_print_task_output(out))
text(job.download_group, 'Job.current().download_group')
text(job.exit_group, 'Job.current().exit_group')
def to_string(obj, **kwargs):
"""
Given a Net, ExecutionStep, Task, TaskGroup or Job, produces a string
with detailed description of the execution steps.
"""
printer = Printer(**kwargs)
printer(obj)
return str(printer)
def debug_net(net):
"""
Given a Net, produce another net that logs info about the operator call
before each operator execution. Use for debugging purposes.
"""
assert isinstance(net, Net)
debug_net = Net(str(net))
assert isinstance(net, Net)
for op in net.Proto().op:
text = Text()
print_op(op, text)
debug_net.LogInfo(str(text))
debug_net.Proto().op.extend([op])
return debug_net