-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutils.py
95 lines (73 loc) · 2.05 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import os
import numpy as np
def mkdir(path):
if not os.path.isdir(path):
os.makedirs(path)
class AverageMeter:
def __init__(self):
self.sum = 0.0
self.n = 0
def add(self, value, n=1):
self.sum += value * n
self.n += n
def value(self):
n = self.n
if n == 0:
mean = np.nan
elif n == 1:
mean = self.sum
else:
mean = self.sum / n
return mean
def reset(self):
self.sum = 0.0
self.n = 0
def compute_similarity_transform(X, Y, compute_optimal_scale=False):
"""
A port of MATLAB's `procrustes` function to Numpy.
Adapted from http://stackoverflow.com/a/18927641/1884420
Args
X: array NxM of targets, with N number of points and M point dimensionality
Y: array NxM of inputs
compute_optimal_scale: whether we compute optimal scale or force it to be 1
Returns:
d: squared error after transformation
Z: transformed Y
T: computed rotation
b: scaling
c: translation
"""
import numpy as np
muX = X.mean(0)
muY = Y.mean(0)
X0 = X - muX
Y0 = Y - muY
ssX = (X0**2.).sum()
ssY = (Y0**2.).sum()
# centred Frobenius norm
normX = np.sqrt(ssX)
normY = np.sqrt(ssY)
# scale to equal (unit) norm
X0 = X0 / normX
Y0 = Y0 / normY
# optimum rotation matrix of Y
A = np.dot(X0.T, Y0)
U,s,Vt = np.linalg.svd(A,full_matrices=False)
V = Vt.T
T = np.dot(V, U.T)
# Make sure we have a rotation
detT = np.linalg.det(T)
V[:,-1] *= np.sign( detT )
s[-1] *= np.sign( detT )
T = np.dot(V, U.T)
traceTA = s.sum()
if compute_optimal_scale: # Compute optimum scaling of Y.
b = traceTA * normX / normY
d = 1 - traceTA**2
Z = normX*traceTA*np.dot(Y0, T) + muX
else: # If no scaling allowed
b = 1
d = 1 + ssY/ssX - 2 * traceTA * normY / normX
Z = normY*np.dot(Y0, T) + muX
c = muX - b*np.dot(muY, T)
return d, Z, T, b, c