-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparallel_project.cpp
184 lines (141 loc) · 4.21 KB
/
parallel_project.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#include <iostream>
#include <chrono>
#include <random>
#include <algorithm>
#include <cstring>
#include <cstdlib>
#include<bits/stdc++.h>
#define MATRIX_SIZE 2048
#define SMALL_SIZE 3
using namespace std;
class Timer {
public:
Timer(const char* header ="")
: beg_(clock_::now()), header(header) {}
~Timer() {
double e = elapsed();
cout << header << ": " << e << " micros" << endl;
}
void reset() { beg_ = clock_::now(); }
double elapsed() const {
return std::chrono::duration_cast<second_>
(clock_::now() - beg_).count(); }
private:
typedef std::chrono::high_resolution_clock clock_;
typedef std::chrono::duration<double, std::ratio<1,1000000> >
second_;
std::chrono::time_point<clock_> beg_;
const char* header;
};
class GaussElimination {
public:
static void serial(vector<double> M, vector<double> b, const int size) {
vector<double> x(size);
{
Timer t("\n\nSERIAL\t\t");
for(int i = 0; i < size - 1; i++) {
for(int j = i + 1; j < size; j++) {
double k = -M[j * size + i] / M[i * size + i];
b[j] += b[i] * k;
for(int l = i; l < size; l++) {
M[j * size + l] += M[i * size + l] * k;
}
}
}
x[size - 1] = b[size - 1] / M[size * size - 1];
for(int i = size - 2; i >= 0; i--) {
double sum = 0;
for(int j = i + 1; j < size; j++) {
sum += M[i * size + j] * x[j];
}
x[i] = (b[i] - sum) / M[i * size + i];
}
}
cout<<"AUGMENTED MATRIX AFTER ROW OPERATIONS:\n";
int size2 = min(size,7);
cout<<"\n";
for(int i=0;i<size2;i++){
cout<<"\t";
for(int j=0;j<size2;j++){
cout<<M[i*size + j]<<"\t";
}
cout<<"\t|\t"<<b[i]<<"\t\t"<<endl;
}
cout<<"\n\nSOLUTION VECTOR: \n";
for(int i=0;i<size2;i++){
cout<<"\tx"<<i+1<<":\t"<<x[i]<<endl;
}
return;
}
public:
static void parallel(vector<double> M, vector<double> b, const int size) {
vector<double> x(size);
{
Timer t("\n\nPARALLEL\t");
double k;
int i, j, l;
for(i = 0; i < size - 1; i++) {
#pragma omp parallel for shared(M, b) private(k, j, l)
for(j = i + 1; j < size; j++) {
double k = -M[j * size + i] / M[i * size + i];
b[j] += b[i] * k;
#pragma omp simd
for(l = i; l < size; l++) {
M[j * size + l] += M[i * size + l] * k;
}
}
}
}
x[size - 1] = b[size - 1] / M[size * size - 1];
for(int i = size - 2; i >= 0; i--) {
double sum = 0;
#pragma omp simd
for(int j = i + 1; j < size; j++) {
sum += M[i * size + j] * x[j];
}
x[i] = (b[i] - sum) / M[i * size + i];
}
cout<<"AUGMENTED MATRIX AFTER ROW OPERATIONS:\n";
int size2 = min(size,7);
cout<<"\n";
for(int i=0;i<size2;i++){
cout<<"\t";
for(int j=0;j<size2;j++){
cout<<M[i*size + j]<<"\t";
}
cout<<"\t|\t"<<b[i]<<"\t\t"<<endl;
}
cout<<"\n\nSOLUTION VECTOR: \n";
for(int i=0;i<size2;i++){
cout<<"\tx"<<i+1<<":\t"<<x[i]<<endl;
}
}
};
int main()
{
int size = SMALL_SIZE;
cout<<"We will solve the set of linear equations: Ax = B using GAUSSIAN ELIMINATION";
cout<<"\n\nEnter the dimension (n X n): ";
cin>>size;
cout<<endl;
// for(int j = 0; j < 1; j++) {
vector<double> M(size*size);
if(size<10) cout<<"Input the A Matrix:\n";
for(int i = 0; i < size * size; i++) {
if(size>=10) {
M[i] = rand() ;//% 100 - 50;
}
else cin>>M[i];
}
vector<double> b(size);
for(int i = 0; i < size; i++) {
if(size>=10) {
b[i] = rand() ;//% 100 - 50;
}
else cin>>b[i];
}
GaussElimination::parallel(M, b, size);
GaussElimination::serial(M, b, size);
// }
return 0;
}