-
Notifications
You must be signed in to change notification settings - Fork 1
/
CL95cms.C
521 lines (492 loc) · 28.1 KB
/
CL95cms.C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
/* --------------------------------------------------------------------------------
Bayesian 95% CL limit and expected (average) 95% CL limit calculator for cross-section with Poisson statistics
The code shoudl be run from root in the compiled mode:
.L cl95cms.c++
Usage to get actual and expected limit respectively:
sigma95 = CL95(ilum, slum, eff, seff, bck, sbck, n, gauss = false, nuisanceModel = 0)
sigma95A = CLA(ilum, slum, eff, seff, bck, sbck, nuisanceModel = 0)
Inputs: ilum - Nominal integrated luminosity (pb^-1)
slum - Absolute error on the integrated luminosity
eff - Nominal value of the efficiency times acceptance (in range 0 to 1)
seff - Absolute error on the efficiency times acceptance
bck - Nominal value of the background estimate
sbck - Absolute error on the background
n - Number of observed events (not used for the expected limit)
gauss - if true, use Gaussian statistics for signal instead of Poisson; automatically false for n = 0. Always false for expected limit calculations
nuisanceModel - distribution function used in integration over nuisance parameters:
0 - Gaussian, 1 - lognormal, 2 - gamma; (automatically 0 when gauss == true)
Limits should be obtained & compared for each allowed value of the nuisanceModel parameter. The justification for doing this is given in
http://www.physics.ucla.edu/~cousins/stats/cousins_lognormal_prior.pdf
A flat prior is assumed for the cross-section.
Written by Greg Landsberg; v1.0 February 27, 2003
Modified by Greg Landsberg; v1.1 March 18, 2003 - some bugs fixed;
automatic graph scaling
Modified by Greg Landsberg; v1.2 May 15, 2003 - clean-up of the code
Modified by Greg Landsberg; v1.3 June 2, 2005 - further clean-up;
protection against numeric instability;
increased table for Poisson distribution;
Modified by Greg Landsberg; v1.3 June 2, 2010 - lognormal and Gamma nuisance
parameter integration
Updated by John Hakala; v1.31 May 11, 2016 - update for compatibility with ROOT6
-------------------------------------------------------------------------------- */
#include "Riostream.h"
//#include <stdlib.h>
#include "TMath.h"
#include "TF1.h"
#include "TH1.h"
#include "TArrow.h"
#include "TCanvas.h"
using namespace std;
static Double_t A0, sA, B0, sB, epsilon, MaxSig = 100.;
static Double_t MinLike = 1.e-6, Precision = 1.e-5;
static Int_t N, MaxIterations = 1000;
static bool lGauss = kFALSE, plot = kTRUE;
static Int_t I = 0;
static Double_t sigma_a = 0., sigma_b = 0., tau_a = 0., tau_b = 0.;
Double_t Likelihood(Double_t *x, Double_t *p);
Double_t Inner(Double_t *x, Double_t *par);
Double_t Outer(Double_t *x, Double_t *p);
Double_t Poisson(Double_t Mu, Int_t n);
Double_t CL95(Double_t ilum, Double_t slum, Double_t eff, Double_t seff, Double_t bck, Double_t sbck, Int_t n, Bool_t gauss = kFALSE, Int_t nuisanceModel = 0);
Double_t CLA(Double_t ilum, Double_t slum, Double_t eff, Double_t seff, Double_t bck, Double_t sbck, Int_t bckint = 0);
Double_t CL95(Double_t ilum, Double_t slum, Double_t eff, Double_t seff, Double_t bck, Double_t sbck, Int_t n, Bool_t gauss, Int_t nuisanceModel)
{
Double_t xmax = MaxSig;
Double_t x[1], p[1];
// Get the nominal values of input (nuisance) parameters and their uncertainties.
A0 = ilum*eff;
sA = sqrt(ilum*seff*ilum*seff + eff*slum*eff*slum);
B0 = bck;
sB = sbck;
epsilon = TMath::Max(Precision/ilum,1.e-4);
//
lGauss = gauss;
if (n == 0) lGauss = kFALSE;
// If using logNormal or gamma functions for nuisance parameters, must express these parameters in the way expected
// by the ROOT implementations of these functions. (See web page given above for details).
if (!gauss)
{
if (nuisanceModel < 0 || nuisanceModel > 2)
{
cout << "Incorrect nuissance parameter integration model. Gaussian will be used." << endl;
nuisanceModel = 0;
}
if (plot) cout << "Poisson 95% CL limit with ";
I = nuisanceModel;
if (nuisanceModel == 0)
{
if (plot) cout << "Gaussian ";
}
else if (nuisanceModel == 1) // Lognormal distribution is used
{
if (B0 <= 0.)
{
cout << endl << "*** Warning: lognormal distribution is ill-defined for B = 0.! ***" << endl;
B0 = sB/1.E3;
if (B0 == 0.) cout << "*** Error: both background and its uncertainty can't be 0! ***" << endl;
}
sigma_b = TMath::Log(1. + sB/B0);
if (A0 > 0) sigma_a = TMath::Log(1. + sA/A0);
else cout << "Error: efficiency times luminosity can't be 0!";
if (plot) cout << "Lognormal ";
}
else if (nuisanceModel == 2) // Gamma distribution is used
{
if (plot) cout << "Gamma ";
if (sA > 0)
{
sigma_a = 1. + A0*A0/sA/sA;
tau_a = A0/sA/sA;
}
if (sB > 0)
{
if (B0 <= 0.)
{
cout << endl << "*** Warning: Gamma distribution is ill-defined for B = 0.! ***" << endl;
B0 = sB/1.E3;
}
sigma_b = 1. + B0*B0/sB/sB;
tau_b = B0/sB/sB;
} else {
}
}
} else if (plot) cout << "Gaussian 95% CL limit with Gaussian ";
if (plot) cout << "nuisance parameter integration will be used" << endl;
// Do some iteration to determine in which cross-section range 0 to xmax the likelihood function is sufficiently
// large to be of interest.
N = n;
x[0] = xmax;
p[0] = 0.;
//
Double_t delta = (Likelihood(x,p) - MinLike)/MinLike;
while (delta > 0)
{
// if (plot) cout << "delta = " << delta << endl;
xmax = 2.*xmax;
x[0] = xmax;
delta = (Likelihood(x,p) - MinLike)/MinLike;
}
//
Double_t x1 = 0, x2 = xmax;
Int_t timeout = 0;
while (fabs(delta) > epsilon)
{
if (delta > 0) x1 = x[0];
else x2 = x[0];
x[0] = (x1 + x2)/2.;
delta = (Likelihood(x,p) - MinLike)/MinLike;
if (timeout++ > MaxIterations)
{
cout << "Maximum number of iterations reached (" << timeout << "); the following precision has been achieved: " << delta << endl;
delta = 0.;
}
}
xmax = x[0];
//
Int_t i = 0;
if (xmax > 1)
{
while (xmax > 10.)
{
xmax /= 10.;
i++;
}
xmax = (Int_t)(xmax + 1)*pow(10,i);
}
else
{
while (xmax < 1.)
{
xmax *= 10.;
i++;
}
xmax = (Int_t)(xmax + 1)*pow(10,-i);
}
// Calculate the likelood function as a function of the cross-section
TF1 like("Likelihood",Likelihood,0.,xmax,0);
if (plot) cout << "Likelihood function is evaluated over [0," << xmax << "] " << endl;
// Integrate the likelihood function, and by iteration determine the cross-section value xmax below which
// 95% of the integral is contained.
//Double_t Norm = like.Integral(0.,xmax,p,epsilon); //Fix for ROOT6
like.SetParameters(p);
Double_t Norm = like.Integral(0.,xmax,epsilon);
if (plot) cout << "likelihood normalization: " << Norm << endl;
//
// Double_t x1, x2, delta;
x1 = 0;
x2 = xmax;
xmax = (x1 + x2)/2.;
//delta = like.Integral(0,xmax,p,epsilon)/Norm - 0.95; //Another fix for ROOT6
delta = like.Integral(0,xmax,epsilon)/Norm - 0.95;
//
timeout = 0;
while (fabs(delta) > epsilon)
{
if (delta < 0) x1 = xmax;
else x2 = xmax;
xmax = (x1 + x2)/2.;
delta = like.Integral(0,xmax,epsilon)/Norm - 0.95; //ROOT6
if (timeout++ > 100)
{
cout << "Maximum number of iterations reached (" << timeout << "); the following precision has been achieved: " << delta << endl;
delta = 0.;
}
}
timeout = 0;
// Plot the likelihood function and show the upper limit.
x[0] = like.GetMaximumX(0.,xmax);
if (plot)
{
TCanvas c("Likelihood");
like.Draw();
TArrow arrow(xmax,Likelihood(x,p)/7.,xmax,0,0.04);
arrow.SetLineWidth(3.);
arrow.Draw();
c.Print("Likelihood.eps");
}
if (plot) cout << "Upper 95% C.L. limit on signal = " << xmax << " pb" << endl;
//
return xmax;
}
Double_t Likelihood(Double_t *x, Double_t *p)
// Calculate the likelihood to see N events as a function of the cross-section x[0].
// This corresponds to the probability that the cross-section x[0] is correct, given a flat prior.
// (N is a global parameter. The parameter p is dummy).
{
Double_t retval = 0.;
if (sB == 0.)
{
if (sA == 0.)
{
// In this case, there is zero uncertainty on the nuisance parameters,
// so the likelihood is simply a Poission (or Gaussian).
if (lGauss) retval = TMath::Gaus(N-B0-x[0]*A0,0.,TMath::Sqrt(N),kTRUE);
else retval = Poisson(B0+x[0]*A0,N);
}
else
{
// In this case, the parameter A0 (lumi*effi) is uncertain, so integrate
// the simple Poission over all possible values of A0, weighted by apriori
// prob. that that parameter is correct.
Double_t par[2];
TF1 *in = new TF1("Inner",Inner,0.,TMath::Max(A0 + 5.*sA,1.E10),2);
par[0]=B0; // background value
par[1]=x[0]; // signal cross section value
if (I == 0)
{
Double_t low = A0 > 5.*sA ? A0 - 5.*sA : 0.;
//retval = in->Integral(low,A0+5.*sA,par,epsilon); // ROOT6
in->SetParameters(par);
retval = in->Integral(low,A0+5.*sA,epsilon);
} else {
Double_t low = 0., high = A0 + 5.*sA, tmp = 1.;
while (tmp > epsilon)
{
//tmp = in->Integral(low,high,par,epsilon);
in->SetParameters(par);
tmp = in->Integral(low,high,epsilon);
retval += tmp;
low = high;
high *= 2;
}
}
delete in;
}
}
else
{
// In this case, both the parameters A0 (lumi*effi) and B0 (background) are uncertain,
// so integrate over both of them.
TF1 *out = new TF1("Outer",Outer,0.,TMath::Max(B0 + 5.*sB,1.E10),1);
if (I == 0)
{
Double_t low = B0 > 5.*sB ? B0 - 5.*sB : 0.;
//retval = out->Integral(low,B0+5.*sB,x,epsilon); //ROOT6
out->SetParameters(x);
retval = out->Integral(low,B0+5.*sB,epsilon);
} else {
Double_t low = 0., high = B0 + 5.*sB, tmp = 1.;
while (tmp > epsilon)
{
//tmp = out->Integral(low,high,x,epsilon); //ROOT6
out->SetParameters(x);
tmp = out->Integral(low,high,epsilon);
retval += tmp;
low = high;
high *= 2;
}
}
delete out;
}
return retval;
}
Double_t Outer(Double_t *x, Double_t *p)
// When calculating Poisson probabilities, allow for uncertainty in B0 (background) by summing over all possible
// values of this parameter, weighted by the apriori probability that it is correct.
// This function can make use of function Inner, which also takes into account uncertainty in lumi*effi.
{
Double_t retval=0;
if (sA == 0.)
{
// cout << "x, sigma_b, B0 = " << x[0] << ", " << sigma_b << ", " << B0 << endl;
if (lGauss) retval = TMath::Gaus(x[0],B0,sB,kTRUE)*TMath::Gaus(N-x[0]-p[0]*A0,0.,TMath::Sqrt(N),kTRUE);
else if (I == 0) retval = TMath::Gaus(x[0],B0,sB,kTRUE)*Poisson(x[0]+p[0]*A0,N);
else if (I == 1) retval = TMath::LogNormal(x[0], sigma_b, 0., B0)*Poisson(x[0]+p[0]*A0,N);
else if (I == 2) retval = TMath::GammaDist(x[0], sigma_b, 0., 1./tau_b)*Poisson(x[0]+p[0]*A0,N);
else return 0;
}
else
{
Double_t par[2];
TF1 *in = new TF1("Inner",Inner,0.,TMath::Max(A0 + 5.*sA,1.E10),2);
par[0]=x[0]; // background value
par[1]=p[0]; // signal cross section value
if (I == 0)
{
Double_t low = A0 > 5.*sA ? A0 - 5.*sA : 0.;
//retval = TMath::Gaus(x[0],B0,sB,kTRUE)*in->Integral(low,A0+5.*sA,par,epsilon); //ROOT6
in->SetParameters(par);
retval = TMath::Gaus(x[0],B0,sB,kTRUE)*in->Integral(low,A0+5.*sA,epsilon);
} else {
Double_t low = 0., high = A0 + 5.*sA, tmp = 1.;
while (tmp > epsilon)
{
in->SetParameters(par);
tmp = in->Integral(low,high,epsilon);
retval += tmp;
low = high;
high *= 2;
}
if (I == 1) retval *= TMath::LogNormal(x[0], sigma_b, 0., B0);
else if (I == 2) retval *= TMath::GammaDist(x[0], sigma_b, 0., 1./tau_b);
else retval = 0;
}
delete in;
}
return retval;
}
Double_t Inner(Double_t *x, Double_t *par)
// When calculating Poisson probabilities, allow for uncertainty in A0 (lumi*effi) by summing over all possible
// values of this parameter, weighted by the apriori probability that it is correct.
{
Double_t sigma, B;
//
B = par[0];
sigma = par[1];
if (lGauss) return TMath::Gaus(x[0],A0,sA,kTRUE)*TMath::Gaus(N-B-sigma*x[0],0.,TMath::Sqrt(N),kTRUE);
else if (I == 0) return TMath::Gaus(x[0],A0,sA,kTRUE)*Poisson(B+sigma*x[0],N);
else if (I == 1) return TMath::LogNormal(x[0], sigma_a, 0., A0)*Poisson(B+sigma*x[0],N);
else if (I == 2) return TMath::GammaDist(x[0], sigma_a, 0., 1./tau_a)*Poisson(B+sigma*x[0],N);
else return 0;
}
Double_t Poisson(Double_t Mu, Int_t n)
// Calculate the Poission prob. of seeing n events given an expectation of Mu.
{
if (Mu <= 0) return n > 0 ? 0. : 1.;
Double_t logP;
//
// Tabulate values of -\sum log(i+2) up to n=1000 for faster calculation
//
// Double_t sum = 0.;
// for (Int_t j = 0; j < 999; j++)
// {
// sum -= log(j+2.);
// printf("%10f, ",sum);
// if (((j+1)/10)*10 == j + 1) printf("\n");
// }
Double_t logTable[999] = {-0.693147, -1.791759, -3.178054, -4.787492, -6.579251, -8.525161, -10.604603, -12.801827, -15.104413, -17.502308,
-19.987214, -22.552164, -25.191221, -27.899271, -30.671860, -33.505073, -36.395445, -39.339884, -42.335616, -45.380139,
-48.471181, -51.606676, -54.784729, -58.003605, -61.261702, -64.557539, -67.889743, -71.257039, -74.658236, -78.092224,
-81.557959, -85.054467, -88.580828, -92.136176, -95.719695, -99.330612, -102.968199, -106.631760, -110.320640, -114.034212,
-117.771881, -121.533082, -125.317271, -129.123934, -132.952575, -136.802723, -140.673924, -144.565744, -148.477767, -152.409593,
-156.360836, -160.331128, -164.320112, -168.327445, -172.352797, -176.395848, -180.456291, -184.533829, -188.628173, -192.739047,
-196.866182, -201.009316, -205.168199, -209.342587, -213.532241, -217.736934, -221.956442, -226.190548, -230.439044, -234.701723,
-238.978390, -243.268849, -247.572914, -251.890402, -256.221136, -260.564941, -264.921650, -269.291098, -273.673124, -278.067573,
-282.474293, -286.893133, -291.323950, -295.766601, -300.220949, -304.686857, -309.164194, -313.652830, -318.152640, -322.663499,
-327.185288, -331.717887, -336.261182, -340.815059, -345.379407, -349.954118, -354.539086, -359.134205, -363.739376, -368.354496,
-372.979469, -377.614198, -382.258589, -386.912549, -391.575988, -396.248817, -400.930948, -405.622296, -410.322777, -415.032307,
-419.750806, -424.478193, -429.214392, -433.959324, -438.712914, -443.475088, -448.245773, -453.024896, -457.812388, -462.608179,
-467.412200, -472.224384, -477.044665, -481.872979, -486.709261, -491.553448, -496.405478, -501.265291, -506.132825, -511.008023,
-515.890825, -520.781174, -525.679014, -530.584288, -535.496943, -540.416924, -545.344178, -550.278652, -555.220294, -560.169054,
-565.124881, -570.087726, -575.057539, -580.034273, -585.017879, -590.008312, -595.005524, -600.009471, -605.020106, -610.037386,
-615.061266, -620.091704, -625.128657, -630.172082, -635.221938, -640.278184, -645.340779, -650.409683, -655.484857, -660.566261,
-665.653857, -670.747608, -675.847474, -680.953420, -686.065407, -691.183401, -696.307365, -701.437264, -706.573062, -711.714726,
-716.862220, -722.015512, -727.174567, -732.339353, -737.509837, -742.685987, -747.867770, -753.055156, -758.248113, -763.446610,
-768.650617, -773.860103, -779.075039, -784.295395, -789.521141, -794.752250, -799.988692, -805.230439, -810.477463, -815.729736,
-820.987232, -826.249922, -831.517780, -836.790780, -842.068894, -847.352098, -852.640365, -857.933670, -863.231987, -868.535292,
-873.843560, -879.156766, -884.474886, -889.797896, -895.125772, -900.458491, -905.796029, -911.138363, -916.485471, -921.837329,
-927.193915, -932.555207, -937.921183, -943.291821, -948.667100, -954.046997, -959.431492, -964.820564, -970.214191, -975.612354,
-981.015031, -986.422203, -991.833849, -997.249950, -1002.670485, -1008.095435, -1013.524780, -1018.958502, -1024.396582, -1029.838999,
-1035.285737, -1040.736775, -1046.192096, -1051.651682, -1057.115514, -1062.583574, -1068.055844, -1073.532308, -1079.012947, -1084.497744,
-1089.986681, -1095.479743, -1100.976911, -1106.478169, -1111.983501, -1117.492889, -1123.006318, -1128.523771, -1134.045232, -1139.570685,
-1145.100114, -1150.633503, -1156.170838, -1161.712101, -1167.257279, -1172.806355, -1178.359314, -1183.916142, -1189.476824, -1195.041344,
-1200.609689, -1206.181843, -1211.757792, -1217.337522, -1222.921018, -1228.508267, -1234.099254, -1239.693965, -1245.292387, -1250.894506,
-1256.500308, -1262.109780, -1267.722908, -1273.339679, -1278.960080, -1284.584097, -1290.211718, -1295.842930, -1301.477720, -1307.116075,
-1312.757982, -1318.403428, -1324.052403, -1329.704892, -1335.360884, -1341.020366, -1346.683326, -1352.349753, -1358.019634, -1363.692957,
-1369.369711, -1375.049884, -1380.733463, -1386.420439, -1392.110798, -1397.804530, -1403.501624, -1409.202067, -1414.905850, -1420.612960,
-1426.323387, -1432.037120, -1437.754148, -1443.474460, -1449.198045, -1454.924892, -1460.654992, -1466.388333, -1472.124906, -1477.864699,
-1483.607702, -1489.353905, -1495.103298, -1500.855871, -1506.611613, -1512.370515, -1518.132566, -1523.897757, -1529.666078, -1535.437519,
-1541.212071, -1546.989723, -1552.770467, -1558.554292, -1564.341189, -1570.131149, -1575.924163, -1581.720221, -1587.519313, -1593.321432,
-1599.126567, -1604.934709, -1610.745850, -1616.559981, -1622.377092, -1628.197175, -1634.020221, -1639.846221, -1645.675166, -1651.507049,
-1657.341860, -1663.179590, -1669.020232, -1674.863776, -1680.710215, -1686.559540, -1692.411742, -1698.266814, -1704.124747, -1709.985533,
-1715.849165, -1721.715633, -1727.584930, -1733.457047, -1739.331978, -1745.209714, -1751.090247, -1756.973569, -1762.859673, -1768.748551,
-1774.640196, -1780.534598, -1786.431752, -1792.331650, -1798.234283, -1804.139645, -1810.047728, -1815.958524, -1821.872027, -1827.788229,
-1833.707123, -1839.628702, -1845.552957, -1851.479884, -1857.409473, -1863.341718, -1869.276612, -1875.214148, -1881.154319, -1887.097119,
-1893.042539, -1898.990574, -1904.941217, -1910.894460, -1916.850298, -1922.808722, -1928.769728, -1934.733307, -1940.699454, -1946.668161,
-1952.639423, -1958.613233, -1964.589584, -1970.568470, -1976.549884, -1982.533820, -1988.520272, -1994.509233, -2000.500698, -2006.494659,
-2012.491111, -2018.490048, -2024.491463, -2030.495350, -2036.501703, -2042.510516, -2048.521784, -2054.535499, -2060.551656, -2066.570249,
-2072.591272, -2078.614720, -2084.640586, -2090.668864, -2096.699550, -2102.732636, -2108.768117, -2114.805988, -2120.846243, -2126.888876,
-2132.933881, -2138.981253, -2145.030987, -2151.083076, -2157.137515, -2163.194299, -2169.253423, -2175.314879, -2181.378665, -2187.444773,
-2193.513198, -2199.583936, -2205.656981, -2211.732327, -2217.809969, -2223.889902, -2229.972121, -2236.056620, -2242.143395, -2248.232440,
-2254.323750, -2260.417320, -2266.513144, -2272.611219, -2278.711537, -2284.814096, -2290.918889, -2297.025912, -2303.135160, -2309.246627,
-2315.360309, -2321.476201, -2327.594299, -2333.714596, -2339.837089, -2345.961772, -2352.088641, -2358.217692, -2364.348918, -2370.482316,
-2376.617881, -2382.755608, -2388.895493, -2395.037530, -2401.181716, -2407.328045, -2413.476513, -2419.627116, -2425.779849, -2431.934707,
-2438.091686, -2444.250781, -2450.411988, -2456.575303, -2462.740721, -2468.908238, -2475.077848, -2481.249549, -2487.423335, -2493.599202,
-2499.777146, -2505.957163, -2512.139248, -2518.323397, -2524.509606, -2530.697870, -2536.888185, -2543.080548, -2549.274953, -2555.471397,
-2561.669876, -2567.870385, -2574.072920, -2580.277478, -2586.484054, -2592.692644, -2598.903244, -2605.115850, -2611.330458, -2617.547065,
-2623.765665, -2629.986255, -2636.208831, -2642.433390, -2648.659926, -2654.888437, -2661.118919, -2667.351367, -2673.585777, -2679.822147,
-2686.060472, -2692.300747, -2698.542971, -2704.787138, -2711.033244, -2717.281287, -2723.531263, -2729.783166, -2736.036995, -2742.292745,
-2748.550413, -2754.809994, -2761.071486, -2767.334884, -2773.600185, -2779.867386, -2786.136482, -2792.407471, -2798.680348, -2804.955110,
-2811.231753, -2817.510275, -2823.790671, -2830.072937, -2836.357071, -2842.643070, -2848.930928, -2855.220644, -2861.512213, -2867.805632,
-2874.100898, -2880.398007, -2886.696957, -2892.997742, -2899.300361, -2905.604810, -2911.911085, -2918.219184, -2924.529102, -2930.840837,
-2937.154385, -2943.469743, -2949.786908, -2956.105876, -2962.426644, -2968.749209, -2975.073568, -2981.399718, -2987.727655, -2994.057376,
-3000.388877, -3006.722157, -3013.057211, -3019.394037, -3025.732631, -3032.072990, -3038.415112, -3044.758992, -3051.104629, -3057.452018,
-3063.801157, -3070.152043, -3076.504672, -3082.859042, -3089.215150, -3095.572992, -3101.932566, -3108.293868, -3114.656896, -3121.021647,
-3127.388118, -3133.756305, -3140.126206, -3146.497818, -3152.871137, -3159.246162, -3165.622889, -3172.001315, -3178.381438, -3184.763254,
-3191.146760, -3197.531955, -3203.918834, -3210.307396, -3216.697636, -3223.089553, -3229.483144, -3235.878406, -3242.275335, -3248.673930,
-3255.074188, -3261.476105, -3267.879679, -3274.284908, -3280.691788, -3287.100316, -3293.510491, -3299.922310, -3306.335768, -3312.750865,
-3319.167598, -3325.585963, -3332.005958, -3338.427580, -3344.850827, -3351.275696, -3357.702184, -3364.130290, -3370.560009, -3376.991340,
-3383.424280, -3389.858827, -3396.294977, -3402.732729, -3409.172079, -3415.613026, -3422.055566, -3428.499697, -3434.945417, -3441.392723,
-3447.841612, -3454.292083, -3460.744132, -3467.197757, -3473.652955, -3480.109725, -3486.568063, -3493.027968, -3499.489436, -3505.952465,
-3512.417053, -3518.883198, -3525.350897, -3531.820147, -3538.290947, -3544.763293, -3551.237184, -3557.712616, -3564.189589, -3570.668098,
-3577.148143, -3583.629720, -3590.112827, -3596.597463, -3603.083624, -3609.571308, -3616.060512, -3622.551236, -3629.043476, -3635.537230,
-3642.032495, -3648.529270, -3655.027552, -3661.527339, -3668.028629, -3674.531419, -3681.035707, -3687.541491, -3694.048769, -3700.557538,
-3707.067797, -3713.579542, -3720.092772, -3726.607485, -3733.123678, -3739.641349, -3746.160496, -3752.681117, -3759.203210, -3765.726773,
-3772.251802, -3778.778297, -3785.306255, -3791.835674, -3798.366551, -3804.898886, -3811.432675, -3817.967916, -3824.504607, -3831.042747,
-3837.582333, -3844.123363, -3850.665835, -3857.209747, -3863.755097, -3870.301882, -3876.850101, -3883.399752, -3889.950832, -3896.503340,
-3903.057274, -3909.612630, -3916.169409, -3922.727607, -3929.287222, -3935.848253, -3942.410697, -3948.974552, -3955.539817, -3962.106490,
-3968.674567, -3975.244049, -3981.814932, -3988.387214, -3994.960895, -4001.535970, -4008.112440, -4014.690301, -4021.269553, -4027.850192,
-4034.432217, -4041.015626, -4047.600417, -4054.186589, -4060.774139, -4067.363066, -4073.953367, -4080.545040, -4087.138085, -4093.732498,
-4100.328279, -4106.925425, -4113.523934, -4120.123804, -4126.725034, -4133.327622, -4139.931566, -4146.536864, -4153.143514, -4159.751515,
-4166.360864, -4172.971560, -4179.583601, -4186.196985, -4192.811711, -4199.427776, -4206.045179, -4212.663918, -4219.283991, -4225.905397,
-4232.528133, -4239.152198, -4245.777591, -4252.404308, -4259.032350, -4265.661713, -4272.292396, -4278.924398, -4285.557717, -4292.192350,
-4298.828297, -4305.465555, -4312.104122, -4318.743998, -4325.385180, -4332.027667, -4338.671457, -4345.316548, -4351.962938, -4358.610627,
-4365.259611, -4371.909890, -4378.561462, -4385.214325, -4391.868478, -4398.523918, -4405.180645, -4411.838656, -4418.497950, -4425.158525,
-4431.820380, -4438.483512, -4445.147921, -4451.813605, -4458.480562, -4465.148790, -4471.818288, -4478.489054, -4485.161087, -4491.834385,
-4498.508947, -4505.184770, -4511.861853, -4518.540196, -4525.219795, -4531.900649, -4538.582758, -4545.266119, -4551.950731, -4558.636592,
-4565.323700, -4572.012055, -4578.701654, -4585.392497, -4592.084580, -4598.777904, -4605.472466, -4612.168265, -4618.865299, -4625.563567,
-4632.263068, -4638.963799, -4645.665759, -4652.368947, -4659.073361, -4665.779001, -4672.485863, -4679.193947, -4685.903251, -4692.613774,
-4699.325515, -4706.038471, -4712.752642, -4719.468025, -4726.184620, -4732.902424, -4739.621438, -4746.341658, -4753.063083, -4759.785713,
-4766.509546, -4773.234579, -4779.960813, -4786.688244, -4793.416873, -4800.146697, -4806.877715, -4813.609926, -4820.343328, -4827.077919,
-4833.813700, -4840.550666, -4847.288819, -4854.028156, -4860.768675, -4867.510376, -4874.253256, -4880.997315, -4887.742552, -4894.488964,
-4901.236550, -4907.985310, -4914.735241, -4921.486343, -4928.238613, -4934.992051, -4941.746655, -4948.502424, -4955.259356, -4962.017451,
-4968.776706, -4975.537121, -4982.298694, -4989.061423, -4995.825308, -5002.590347, -5009.356539, -5016.123882, -5022.892375, -5029.662017,
-5036.432806, -5043.204742, -5049.977822, -5056.752046, -5063.527412, -5070.303919, -5077.081566, -5083.860351, -5090.640273, -5097.421330,
-5104.203522, -5110.986848, -5117.771305, -5124.556892, -5131.343609, -5138.131454, -5144.920426, -5151.710523, -5158.501745, -5165.294089,
-5172.087555, -5178.882142, -5185.677848, -5192.474671, -5199.272612, -5206.071668, -5212.871838, -5219.673121, -5226.475515, -5233.279021,
-5240.083635, -5246.889358, -5253.696187, -5260.504122, -5267.313161, -5274.123304, -5280.934548, -5287.746893, -5294.560338, -5301.374881,
-5308.190521, -5315.007257, -5321.825087, -5328.644011, -5335.464028, -5342.285135, -5349.107333, -5355.930619, -5362.754992, -5369.580452,
-5376.406998, -5383.234627, -5390.063339, -5396.893133, -5403.724007, -5410.555960, -5417.388992, -5424.223101, -5431.058286, -5437.894545,
-5444.731878, -5451.570283, -5458.409759, -5465.250306, -5472.091921, -5478.934605, -5485.778355, -5492.623170, -5499.469050, -5506.315993,
-5513.163998, -5520.013065, -5526.863191, -5533.714376, -5540.566618, -5547.419917, -5554.274272, -5561.129681, -5567.986143, -5574.843657,
-5581.702222, -5588.561837, -5595.422500, -5602.284212, -5609.146970, -5616.010773, -5622.875621, -5629.741512, -5636.608445, -5643.476419,
-5650.345434, -5657.215487, -5664.086579, -5670.958707, -5677.831871, -5684.706069, -5691.581301, -5698.457566, -5705.334862, -5712.213188,
-5719.092544, -5725.972928, -5732.854339, -5739.736777, -5746.620240, -5753.504726, -5760.390236, -5767.276768, -5774.164320, -5781.052893,
-5787.942484, -5794.833093, -5801.724719, -5808.617361, -5815.511017, -5822.405687, -5829.301370, -5836.198064, -5843.095769, -5849.994483,
-5856.894207, -5863.794937, -5870.696674, -5877.599417, -5884.503164, -5891.407915, -5898.313668, -5905.220423, -5912.128178 };
logP = -Mu + n*log(Mu);
if (n >= 2) logP += logTable[TMath::Min(n,1000)-2];
for (Int_t i = 1001; i <= n; i++) logP -= log((Double_t) i);
return exp(logP);
}//
Double_t CLA(Double_t ilum, Double_t slum, Double_t eff, Double_t seff, Double_t bck, Double_t sbck, Int_t bckint)
{
plot = kFALSE;
Double_t CL95A = 0, precision = 1.e-3;
Int_t i;
for (i = bck; i >= 0; i--)
{
//
Double_t s95 = CL95(ilum, slum, eff, seff, bck, sbck, i, kFALSE, bckint);
Double_t s95w =s95*Poisson(bck,i);
CL95A += s95w;
cout << "n = " << i << "; 95% C.L. = " << s95 << " pb; weighted 95% C.L. = " << s95w << " pb; running <s95> = " << CL95A << " pb" << endl;
//
if (s95w < CL95A*precision) break;
}
cout << "Lower bound on n has been found at " << i+1 << endl;
//
for (i = bck+1; ; i++)
{
Double_t s95 = CL95(ilum, slum, eff, seff, bck, sbck, i, kFALSE, bckint);
Double_t s95w =s95*Poisson(bck,i);
CL95A += s95w;
cout << "n = " << i << "; 95% C.L. = " << s95 << " pb; weighted 95% C.L. = " << s95w << " pb; running <s95> = " << CL95A << " pb" << endl;
//
if (s95w < CL95A*precision) break;
}
cout << "Upper bound on n has been found at " << i << endl;
//
cout << "Average upper 95% C.L. limit = " << CL95A << " pb" << endl;
return CL95A;
}