-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_angle_observation.py
32 lines (27 loc) · 1005 Bytes
/
model_angle_observation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import numpy as np
import matplotlib.pyplot as plt
# Define the function
def compute_observation_from_angle_to_goal(measurement, best_angle, alpha=0.2):
if measurement<10:
return 0
else:
normalized_angle_diff = abs(measurement - best_angle) / best_angle
angle_likelihood = np.exp(-alpha * normalized_angle_diff)
p_z = angle_likelihood
return p_z
best_angle = 50 # Best angle to goal
# Generate a range of angle measurements from 0 to 180
angle_measurements = np.arange(0, best_angle+1)
# Compute the observations for each measurement
angle_observations = [compute_observation_from_angle_to_goal(m, best_angle) for m in angle_measurements]
# Plot the results
plt.figure(figsize=(10, 6))
plt.plot(angle_measurements, angle_observations, label='p_z vs Angle Measurement')
plt.xlim(0, best_angle)
plt.ylim(0, 1)
plt.xlabel('Angle Measurement (degrees)')
plt.ylabel('p_z')
plt.title('Observation from Angle to Goal')
plt.legend()
plt.grid(True)
plt.show()