forked from PLN-team/PLNmodels
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.Rmd
57 lines (36 loc) · 2.19 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
output: github_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
# PLNmodels: Poisson lognormal models <img src="inst/sticker/PLNmodels.png" align="right" width="155" height="180"/>
[](https://travis-ci.org/jchiquet/PLNmodels)
[](https://ci.appveyor.com/project/jchiquet/PLNmodels)
> The Poisson lognormal model and variants can be used for a variety of multivariate problems when count data are at play (including PCA for count data and network inference). This package implements an efficient algorithm to fit such models accompanied with a set of functions for vizualisation and diagnostic. Learn more in the vignettes: `vignette(package = "PLNmodels")`.
## Installation
### System Requirements
Installation requires a system version of [nlopt 2.4-2](https://nlopt.readthedocs.io/)
- On Debian or Ubuntu use `libnlopt-dev`:
```{bash apt, eval = FALSE}
sudo apt-get install libnlopt-dev
```
- On Fedora or similar use `NLopt-devel`:
```{bash yum, eval = FALSE}
sudo yum install NLopt-devel
```
- With Mac OS X, install `nlopt` via [homebrew](https://brew.sh/)
```{bash brew, eval = FALSE}
brew install nlopt
```
- On Windows, the package now builds and installs correctly, by [including static libraries](https://github.com/rwinlib/nlopt) on compilation. However, I just test it with appveyor so I have never run PLNmodels on Windows: any feedbacks welcomed!
### R Package installation
```{r package, eval = FALSE}
## w/o vignettes
devtools::install_github("jchiquet/PLNmodels")
devtools::install_github("jchiquet/PLNmodels", build_vignettes = TRUE)
```
## References
Please cite our work using the following references:
- J. Chiquet, M. Mariadassou and S. Robin: Variational inference for probabilistic Poisson PCA, the Annals of Applied Statistics, to appear. [link](https://arxiv.org/abs/1703.06633)
- J. Chiquet, M. Mariadassou and S. Robin: Variational inference for sparse network reconstruction from count data, arXiv preprint, 2018. [link](https://arxiv.org/abs/1806.03120)