forked from openai/openai-cookbook
-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathapi_request_parallel_processor.py
456 lines (399 loc) · 19.9 KB
/
api_request_parallel_processor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
"""
API REQUEST PARALLEL PROCESSOR
Using the OpenAI API to process lots of text quickly takes some care.
If you trickle in a million API requests one by one, they'll take days to complete.
If you flood a million API requests in parallel, they'll exceed the rate limits and fail with errors.
To maximize throughput, parallel requests need to be throttled to stay under rate limits.
This script parallelizes requests to the OpenAI API while throttling to stay under rate limits.
Features:
- Streams requests from file, to avoid running out of memory for giant jobs
- Makes requests concurrently, to maximize throughput
- Throttles request and token usage, to stay under rate limits
- Retries failed requests up to {max_attempts} times, to avoid missing data
- Logs errors, to diagnose problems with requests
Example command to call script:
```
python examples/api_request_parallel_processor.py \
--requests_filepath examples/data/example_requests_to_parallel_process.jsonl \
--save_filepath examples/data/example_requests_to_parallel_process_results.jsonl \
--request_url https://api.openai.com/v1/embeddings \
--max_requests_per_minute 1500 \
--max_tokens_per_minute 6250000 \
--token_encoding_name cl100k_base \
--max_attempts 5 \
--logging_level 20
```
Inputs:
- requests_filepath : str
- path to the file containing the requests to be processed
- file should be a jsonl file, where each line is a json object with API parameters and an optional metadata field
- e.g., {"model": "text-embedding-ada-002", "input": "embed me", "metadata": {"row_id": 1}}
- as with all jsonl files, take care that newlines in the content are properly escaped (json.dumps does this automatically)
- an example file is provided at examples/data/example_requests_to_parallel_process.jsonl
- the code to generate the example file is appended to the bottom of this script
- save_filepath : str, optional
- path to the file where the results will be saved
- file will be a jsonl file, where each line is an array with the original request plus the API response
- e.g., [{"model": "text-embedding-ada-002", "input": "embed me"}, {...}]
- if omitted, results will be saved to {requests_filename}_results.jsonl
- request_url : str, optional
- URL of the API endpoint to call
- if omitted, will default to "https://api.openai.com/v1/embeddings"
- api_key : str, optional
- API key to use
- if omitted, the script will attempt to read it from an environment variable {os.getenv("OPENAI_API_KEY")}
- max_requests_per_minute : float, optional
- target number of requests to make per minute (will make less if limited by tokens)
- leave headroom by setting this to 50% or 75% of your limit
- if requests are limiting you, try batching multiple embeddings or completions into one request
- if omitted, will default to 1,500
- max_tokens_per_minute : float, optional
- target number of tokens to use per minute (will use less if limited by requests)
- leave headroom by setting this to 50% or 75% of your limit
- if omitted, will default to 125,000
- token_encoding_name : str, optional
- name of the token encoding used, as defined in the `tiktoken` package
- if omitted, will default to "cl100k_base" (used by `text-embedding-ada-002`)
- max_attempts : int, optional
- number of times to retry a failed request before giving up
- if omitted, will default to 5
- logging_level : int, optional
- level of logging to use; higher numbers will log fewer messages
- 40 = ERROR; will log only when requests fail after all retries
- 30 = WARNING; will log when requests his rate limits or other errors
- 20 = INFO; will log when requests start and the status at finish
- 10 = DEBUG; will log various things as the loop runs to see when they occur
- if omitted, will default to 20 (INFO).
The script is structured as follows:
- Imports
- Define main()
- Initialize things
- In main loop:
- Get next request if one is not already waiting for capacity
- Update available token & request capacity
- If enough capacity available, call API
- The loop pauses if a rate limit error is hit
- The loop breaks when no tasks remain
- Define dataclasses
- StatusTracker (stores script metadata counters; only one instance is created)
- APIRequest (stores API inputs, outputs, metadata; one method to call API)
- Define functions
- api_endpoint_from_url (extracts API endpoint from request URL)
- append_to_jsonl (writes to results file)
- num_tokens_consumed_from_request (bigger function to infer token usage from request)
- task_id_generator_function (yields 1, 2, 3, ...)
- Run main()
"""
# imports
import aiohttp # for making API calls concurrently
import argparse # for running script from command line
import asyncio # for running API calls concurrently
import json # for saving results to a jsonl file
import logging # for logging rate limit warnings and other messages
import os # for reading API key
import re # for matching endpoint from request URL
import tiktoken # for counting tokens
import time # for sleeping after rate limit is hit
from dataclasses import dataclass, field # for storing API inputs, outputs, and metadata
async def process_api_requests_from_file(
requests_filepath: str,
save_filepath: str,
request_url: str,
api_key: str,
max_requests_per_minute: float,
max_tokens_per_minute: float,
token_encoding_name: str,
max_attempts: int,
logging_level: int,
):
"""Processes API requests in parallel, throttling to stay under rate limits."""
# constants
seconds_to_pause_after_rate_limit_error = 15
seconds_to_sleep_each_loop = 0.001 # 1 ms limits max throughput to 1,000 requests per second
# initialize logging
logging.basicConfig(level=logging_level)
logging.debug(f"Logging initialized at level {logging_level}")
# infer API endpoint and construct request header
api_endpoint = api_endpoint_from_url(request_url)
request_header = {"Authorization": f"Bearer {api_key}"}
# initialize trackers
queue_of_requests_to_retry = asyncio.Queue()
task_id_generator = task_id_generator_function() # generates integer IDs of 1, 2, 3, ...
status_tracker = StatusTracker() # single instance to track a collection of variables
next_request = None # variable to hold the next request to call
# initialize available capacity counts
available_request_capacity = max_requests_per_minute
available_token_capacity = max_tokens_per_minute
last_update_time = time.time()
# initialize flags
file_not_finished = True # after file is empty, we'll skip reading it
logging.debug(f"Initialization complete.")
# initialize file reading
with open(requests_filepath) as file:
# `requests` will provide requests one at a time
requests = file.__iter__()
logging.debug(f"File opened. Entering main loop")
while True:
# get next request (if one is not already waiting for capacity)
if next_request is None:
if not queue_of_requests_to_retry.empty():
next_request = queue_of_requests_to_retry.get_nowait()
logging.debug(f"Retrying request {next_request.task_id}: {next_request}")
elif file_not_finished:
try:
# get new request
request_json = json.loads(next(requests))
next_request = APIRequest(
task_id=next(task_id_generator),
request_json=request_json,
token_consumption=num_tokens_consumed_from_request(request_json, api_endpoint, token_encoding_name),
attempts_left=max_attempts,
metadata=request_json.pop("metadata", None)
)
status_tracker.num_tasks_started += 1
status_tracker.num_tasks_in_progress += 1
logging.debug(f"Reading request {next_request.task_id}: {next_request}")
except StopIteration:
# if file runs out, set flag to stop reading it
logging.debug("Read file exhausted")
file_not_finished = False
# update available capacity
current_time = time.time()
seconds_since_update = current_time - last_update_time
available_request_capacity = min(
available_request_capacity + max_requests_per_minute * seconds_since_update / 60.0,
max_requests_per_minute,
)
available_token_capacity = min(
available_token_capacity + max_tokens_per_minute * seconds_since_update / 60.0,
max_tokens_per_minute,
)
last_update_time = current_time
# if enough capacity available, call API
if next_request:
next_request_tokens = next_request.token_consumption
if (
available_request_capacity >= 1
and available_token_capacity >= next_request_tokens
):
# update counters
available_request_capacity -= 1
available_token_capacity -= next_request_tokens
next_request.attempts_left -= 1
# call API
asyncio.create_task(
next_request.call_api(
request_url=request_url,
request_header=request_header,
retry_queue=queue_of_requests_to_retry,
save_filepath=save_filepath,
status_tracker=status_tracker,
)
)
next_request = None # reset next_request to empty
# if all tasks are finished, break
if status_tracker.num_tasks_in_progress == 0:
break
# main loop sleeps briefly so concurrent tasks can run
await asyncio.sleep(seconds_to_sleep_each_loop)
# if a rate limit error was hit recently, pause to cool down
seconds_since_rate_limit_error = (time.time() - status_tracker.time_of_last_rate_limit_error)
if seconds_since_rate_limit_error < seconds_to_pause_after_rate_limit_error:
remaining_seconds_to_pause = (seconds_to_pause_after_rate_limit_error - seconds_since_rate_limit_error)
await asyncio.sleep(remaining_seconds_to_pause)
# ^e.g., if pause is 15 seconds and final limit was hit 5 seconds ago
logging.warn(f"Pausing to cool down until {time.ctime(status_tracker.time_of_last_rate_limit_error + seconds_to_pause_after_rate_limit_error)}")
# after finishing, log final status
logging.info(f"""Parallel processing complete. Results saved to {save_filepath}""")
if status_tracker.num_tasks_failed > 0:
logging.warning(f"{status_tracker.num_tasks_failed} / {status_tracker.num_tasks_started} requests failed. Errors logged to {save_filepath}.")
if status_tracker.num_rate_limit_errors > 0:
logging.warning(f"{status_tracker.num_rate_limit_errors} rate limit errors received. Consider running at a lower rate.")
# dataclasses
@dataclass
class StatusTracker:
"""Stores metadata about the script's progress. Only one instance is created."""
num_tasks_started: int = 0
num_tasks_in_progress: int = 0 # script ends when this reaches 0
num_tasks_succeeded: int = 0
num_tasks_failed: int = 0
num_rate_limit_errors: int = 0
num_api_errors: int = 0 # excluding rate limit errors, counted above
num_other_errors: int = 0
time_of_last_rate_limit_error: int = 0 # used to cool off after hitting rate limits
@dataclass
class APIRequest:
"""Stores an API request's inputs, outputs, and other metadata. Contains a method to make an API call."""
task_id: int
request_json: dict
token_consumption: int
attempts_left: int
metadata: dict
result: list = field(default_factory=list)
async def call_api(
self,
request_url: str,
request_header: dict,
retry_queue: asyncio.Queue,
save_filepath: str,
status_tracker: StatusTracker,
):
"""Calls the OpenAI API and saves results."""
logging.info(f"Starting request #{self.task_id}")
error = None
try:
async with aiohttp.ClientSession() as session:
async with session.post(
url=request_url, headers=request_header, json=self.request_json
) as response:
response = await response.json()
if "error" in response:
logging.warning(
f"Request {self.task_id} failed with error {response['error']}"
)
status_tracker.num_api_errors += 1
error = response
if "Rate limit" in response["error"].get("message", ""):
status_tracker.time_of_last_rate_limit_error = time.time()
status_tracker.num_rate_limit_errors += 1
status_tracker.num_api_errors -= 1 # rate limit errors are counted separately
except Exception as e: # catching naked exceptions is bad practice, but in this case we'll log & save them
logging.warning(f"Request {self.task_id} failed with Exception {e}")
status_tracker.num_other_errors += 1
error = e
if error:
self.result.append(error)
if self.attempts_left:
retry_queue.put_nowait(self)
else:
logging.error(f"Request {self.request_json} failed after all attempts. Saving errors: {self.result}")
data = (
[self.request_json, [str(e) for e in self.result], self.metadata]
if self.metadata
else [self.request_json, [str(e) for e in self.result]]
)
append_to_jsonl(data, save_filepath)
status_tracker.num_tasks_in_progress -= 1
status_tracker.num_tasks_failed += 1
else:
data = (
[self.request_json, response, self.metadata]
if self.metadata
else [self.request_json, response]
)
append_to_jsonl(data, save_filepath)
status_tracker.num_tasks_in_progress -= 1
status_tracker.num_tasks_succeeded += 1
logging.debug(f"Request {self.task_id} saved to {save_filepath}")
# functions
def api_endpoint_from_url(request_url):
"""Extract the API endpoint from the request URL."""
match = re.search('^https://[^/]+/v\\d+/(.+)$', request_url)
return match[1]
def append_to_jsonl(data, filename: str) -> None:
"""Append a json payload to the end of a jsonl file."""
json_string = json.dumps(data)
with open(filename, "a") as f:
f.write(json_string + "\n")
def num_tokens_consumed_from_request(
request_json: dict,
api_endpoint: str,
token_encoding_name: str,
):
"""Count the number of tokens in the request. Only supports completion and embedding requests."""
encoding = tiktoken.get_encoding(token_encoding_name)
# if completions request, tokens = prompt + n * max_tokens
if api_endpoint.endswith("completions"):
max_tokens = request_json.get("max_tokens", 15)
n = request_json.get("n", 1)
completion_tokens = n * max_tokens
# chat completions
if api_endpoint.startswith("chat/"):
num_tokens = 0
for message in request_json["messages"]:
num_tokens += 4 # every message follows <im_start>{role/name}\n{content}<im_end>\n
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name": # if there's a name, the role is omitted
num_tokens -= 1 # role is always required and always 1 token
num_tokens += 2 # every reply is primed with <im_start>assistant
return num_tokens + completion_tokens
# normal completions
else:
prompt = request_json["prompt"]
if isinstance(prompt, str): # single prompt
prompt_tokens = len(encoding.encode(prompt))
num_tokens = prompt_tokens + completion_tokens
return num_tokens
elif isinstance(prompt, list): # multiple prompts
prompt_tokens = sum([len(encoding.encode(p)) for p in prompt])
num_tokens = prompt_tokens + completion_tokens * len(prompt)
return num_tokens
else:
raise TypeError('Expecting either string or list of strings for "prompt" field in completion request')
# if embeddings request, tokens = input tokens
elif api_endpoint == "embeddings":
input = request_json["input"]
if isinstance(input, str): # single input
num_tokens = len(encoding.encode(input))
return num_tokens
elif isinstance(input, list): # multiple inputs
num_tokens = sum([len(encoding.encode(i)) for i in input])
return num_tokens
else:
raise TypeError('Expecting either string or list of strings for "inputs" field in embedding request')
# more logic needed to support other API calls (e.g., edits, inserts, DALL-E)
else:
raise NotImplementedError(f'API endpoint "{api_endpoint}" not implemented in this script')
def task_id_generator_function():
"""Generate integers 0, 1, 2, and so on."""
task_id = 0
while True:
yield task_id
task_id += 1
# run script
if __name__ == "__main__":
# parse command line arguments
parser = argparse.ArgumentParser()
parser.add_argument("--requests_filepath")
parser.add_argument("--save_filepath", default=None)
parser.add_argument("--request_url", default="https://api.openai.com/v1/embeddings")
parser.add_argument("--api_key", default=os.getenv("OPENAI_API_KEY"))
parser.add_argument("--max_requests_per_minute", type=int, default=3_000 * 0.5)
parser.add_argument("--max_tokens_per_minute", type=int, default=250_000 * 0.5)
parser.add_argument("--token_encoding_name", default="cl100k_base")
parser.add_argument("--max_attempts", type=int, default=5)
parser.add_argument("--logging_level", default=logging.INFO)
args = parser.parse_args()
if args.save_filepath is None:
args.save_filepath = args.requests_filepath.replace(".jsonl", "_results.jsonl")
# run script
asyncio.run(
process_api_requests_from_file(
requests_filepath=args.requests_filepath,
save_filepath=args.save_filepath,
request_url=args.request_url,
api_key=args.api_key,
max_requests_per_minute=float(args.max_requests_per_minute),
max_tokens_per_minute=float(args.max_tokens_per_minute),
token_encoding_name=args.token_encoding_name,
max_attempts=int(args.max_attempts),
logging_level=int(args.logging_level),
)
)
"""
APPENDIX
The example requests file at openai-cookbook/examples/data/example_requests_to_parallel_process.jsonl contains 10,000 requests to text-embedding-ada-002.
It was generated with the following code:
```python
import json
filename = "data/example_requests_to_parallel_process.jsonl"
n_requests = 10_000
jobs = [{"model": "text-embedding-ada-002", "input": str(x) + "\n"} for x in range(n_requests)]
with open(filename, "w") as f:
for job in jobs:
json_string = json.dumps(job)
f.write(json_string + "\n")
```
As with all jsonl files, take care that newlines in the content are properly escaped (json.dumps does this automatically).
"""