-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathammo_ocr.py
81 lines (63 loc) · 2.25 KB
/
ammo_ocr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import cv2
import numpy as np
import os
from func_cv_imread import cv_imread
from func_img_proc import img_similarity, black_area, scale_image
import pandas as pd
def cut_ammo(
img: np.ndarray[int, np.dtype[np.uint8]]
) -> np.ndarray[int, np.dtype[np.uint8]]: # 裁切主弹夹弹药数字
_h = img.shape[0]
_w = img.shape[1]
assert isinstance(_h, int)
assert isinstance(_w, int)
if _h == 1080 and _w == 1920:
return img[961:1000, 1700:1785]
if _h == 1600 and _w == 2560:
return scale_image(img[1440:1492, 2266:2380], 0.75)
return img[961:1000, 1700:1785]
def binary_ammo(img: np.ndarray) -> np.ndarray: # 弹药数字图二值化
img_binary = cv2.threshold(img, 215, 255, cv2.THRESH_BINARY_INV)[1]
return img_binary
def ammo_ocr_img_process(img: np.ndarray) -> np.ndarray: # 预处理弹药数字图
if img.ndim > 2:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
return binary_ammo(cut_ammo(img))
def digit2(img: np.ndarray) -> np.ndarray: # 百位数
return img[3:34, 3:26]
def digit1(img: np.ndarray) -> np.ndarray: # 十位数
return img[3:34, 30:53]
def digit0(img: np.ndarray) -> np.ndarray: # 个位数
return img[3:34, 57:80]
def ammo_recognize_1_digit(img: np.ndarray) -> int:
if black_area(img) < 80:
return None
reffiledir = './Ref/Ammo/'
maxn = 10
similarity = np.zeros([maxn, 1], dtype=np.uint16)
for i in range(maxn):
img_Ref = cv2.imread(reffiledir + str(i) + '.png', 0)
sim = img_similarity(img, img_Ref)
similarity[i, 0] = sim
maxsimnum = np.max(similarity)
maxsimname = np.where(similarity == np.max(similarity))[0][0]
if maxsimnum < 300:
return None
return maxsimname
def ammo_recognize_cv(img: np.ndarray, digits: int) -> int:
img = ammo_ocr_img_process(img)
ammo_num = ammo_recognize_1_digit(digit0(img))
if ammo_num is None:
return None
if digits > 1:
d1 = ammo_recognize_1_digit(digit1(img))
if d1 is not None:
ammo_num += 10 * d1
if digits == 3:
d2 = ammo_recognize_1_digit(digit2(img))
if d2 is not None:
ammo_num += 100 * d2
return ammo_num
if __name__ == '__main__':
# Ammo_Train_Generate()
pass