-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnnLstmForecast.py
143 lines (135 loc) · 5.08 KB
/
cnnLstmForecast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# univariate multi-step encoder-decoder convlstm
from math import sqrt
from numpy import split
from numpy import array
from pandas import read_csv
from sklearn.metrics import mean_squared_error
from matplotlib import pyplot
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers import LSTM
from keras.layers import RepeatVector
from keras.layers import TimeDistributed
from keras.layers import ConvLSTM2D
# split a univariate dataset into train/test sets
def split_dataset(data):
# split into standard weeks
train, test = data[1:-328], data[-328:-6]
# restructure into windows of weekly data
train = array(split(train, len(train)/7))
test = array(split(test, len(test)/7))
return train, test
# evaluate one or more weekly forecasts against expected values
def evaluate_forecasts(actual, predicted):
scores = list()
# calculate an RMSE score for each day
for i in range(actual.shape[1]):
# calculate mse
mse = mean_squared_error(actual[:, i], predicted[:, i])
# calculate rmse
rmse = sqrt(mse)
# store
scores.append(rmse)
# calculate overall RMSE
s = 0
for row in range(actual.shape[0]):
for col in range(actual.shape[1]):
s += (actual[row, col] - predicted[row, col])**2
score = sqrt(s / (actual.shape[0] * actual.shape[1]))
return score, scores
# summarize scores
def summarize_scores(name, score, scores):
s_scores = ', '.join(['%.1f' % s for s in scores])
print('%s: [%.3f] %s' % (name, score, s_scores))
# convert history into inputs and outputs
def to_supervised(train, n_input, n_out=7):
# flatten data
data = train.reshape((train.shape[0]*train.shape[1], train.shape[2]))
X, y = list(), list()
in_start = 0
# step over the entire history one time step at a time
for _ in range(len(data)):
# define the end of the input sequence
in_end = in_start + n_input
out_end = in_end + n_out
# ensure we have enough data for this instance
if out_end < len(data):
x_input = data[in_start:in_end, 0]
x_input = x_input.reshape((len(x_input), 1))
X.append(x_input)
y.append(data[in_end:out_end, 0])
# move along one time step
in_start += 1
return array(X), array(y)
# train the model
def build_model(train, n_steps, n_length, n_input):
# prepare data
train_x, train_y = to_supervised(train, n_input)
# define parameters
verbose, epochs, batch_size = 0, 20, 16
n_timesteps, n_features, n_outputs = train_x.shape[1], train_x.shape[2], train_y.shape[1]
# reshape into subsequences [samples, time steps, rows, cols, channels]
train_x = train_x.reshape((train_x.shape[0], n_steps, 1, n_length, n_features))
# reshape output into [samples, timesteps, features]
train_y = train_y.reshape((train_y.shape[0], train_y.shape[1], 1))
# define model
model = Sequential()
model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu', input_shape=(n_steps, 1, n_length, n_features)))
model.add(Flatten())
model.add(RepeatVector(n_outputs))
model.add(LSTM(200, activation='relu', return_sequences=True))
model.add(TimeDistributed(Dense(100, activation='relu')))
model.add(TimeDistributed(Dense(1)))
model.compile(loss='mse', optimizer='adam')
# fit network
model.fit(train_x, train_y, epochs=epochs, batch_size=batch_size, verbose=verbose)
return model
# make a forecast
def forecast(model, history, n_steps, n_length, n_input):
# flatten data
data = array(history)
data = data.reshape((data.shape[0]*data.shape[1], data.shape[2]))
# retrieve last observations for input data
input_x = data[-n_input:, 0]
# reshape into [samples, time steps, rows, cols, channels]
input_x = input_x.reshape((1, n_steps, 1, n_length, 1))
# forecast the next week
yhat = model.predict(input_x, verbose=0)
# we only want the vector forecast
yhat = yhat[0]
return yhat
# evaluate a single model
def evaluate_model(train, test, n_steps, n_length, n_input):
# fit model
model = build_model(train, n_steps, n_length, n_input)
# history is a list of weekly data
history = [x for x in train]
# walk-forward validation over each week
predictions = list()
for i in range(len(test)):
# predict the week
yhat_sequence = forecast(model, history, n_steps, n_length, n_input)
# store the predictions
predictions.append(yhat_sequence)
# get real observation and add to history for predicting the next week
history.append(test[i, :])
# evaluate predictions days for each week
predictions = array(predictions)
score, scores = evaluate_forecasts(test[:, :, 0], predictions)
return score, scores
# load the new file
dataset = read_csv('household_power_consumption_days.csv', header=0, infer_datetime_format=True, parse_dates=['datetime'], index_col=['datetime'])
# split into train and test
train, test = split_dataset(dataset.values)
# define the number of subsequences and the length of subsequences
n_steps, n_length = 2, 7
# define the total days to use as input
n_input = n_length * n_steps
score, scores = evaluate_model(train, test, n_steps, n_length, n_input)
# summarize scores
summarize_scores('lstm', score, scores)
# plot scores
days = ['sun', 'mon', 'tue', 'wed', 'thr', 'fri', 'sat']
pyplot.plot(days, scores, marker='o', label='lstm')
pyplot.show()