forked from liel-cohen/CytoMod
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcytomod_analyze_data.py
366 lines (308 loc) · 17.7 KB
/
cytomod_analyze_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
'''
Welcome to the CytoMod example code!
The full paper describing the method can be found at
https://www.frontiersin.org/articles/10.3389/fimmu.2019.01338/
The CytoMod folder contains a folder named data_files/data that contains
files named cytokine_data.xlsx and patient_data.xlsx, which hold
the data for the code's analysis.
You can replace these files with your own data files
while following the format instructions bellow.
# cytokine_data.xlsx: the first column is the subject IDs
(named PTID in the example file) which will be converted
to row indexes. If your dataset has no subject IDs,
change 'indexCol=0' to 'indexCol=None', in both cy_data and patients_data
initialization under the "Get data" header.
The next columns are your cytokines data. Each column should have
the raw cytokine measurment for the subject indicated in the specific row.
# patient_data.xlsx: Optional file for patient outcomes, for the associations
to outcomes analysis. The first column is the subject IDs
(named PTID in the example file). The instructions regarding
the IDs are the same as for the cytokine_data.xlsx file. This
data-frame should contain outcome variables to be analyzed in the
associations to outcomes analysis. It may also contain covariate
variables for controlling the regression models built for the
associations calculation.
*Make sure binary columns contain 0 and 1 values, or True and False values
(and cells with unknown values are left empty)
A folder named 'output' will be created by the code inside the
data_files folder. The code writes all results and figures into this folder.
Arguments to be manually defined:
* args.name_data
Name of dataset/cohort (for writing files)
* args.name_compartment
Name of compartment from which cytokines were extracted, e.g., serum (for writing files)
* args.cytokines
List of cytokines to be analyzed. If None, will analyze all cytokines in the cytokine_data file.
* args.log_transform
Boolean indicating whether to perform a log (base 10) transformation (True) or not (False).
* args.outcomes
Optional. Names of outcome variables from the patients_data.xlsx data-frame to be analyzed.
If list is left empty (i.e., []), will not perform the associations to outcomes analysis.
This code supports binary or continuous outcome variables. Note - binary and continuous variables
must be analyzed separately, i.e., you can analyze binary *or* continuous variables.
(Binary outcome columns should only contain 0/1 or True/False values.)
* args.logistic
Set to True if outcomes variables are binary (then, logistic regression will be used).
Set to False if outcomes variables are continuous (then, linear regression will be used).
*According to chosen value, see "associations" -> "output figures" for correct definition of
colorscale_value and colorscale_labels variables, which define the colorscale for associations figures
* args.covariates
Optional. Names of covariate variables (columns) from the patients_data.xlsx data-frame
to be controlled for in the regression models. If list is left empty (i.e., []),
will not control the associations to outcomes analysis with any covariate variables.
Categorical covariates should be inserted as dummy variables.
* args.log_column_names
List with names of covariate columns (from patient_data.xlsx) to be log-transformed,
only if args.log_transform = True.
If there are no columns you wish to transform, leave empty (i.e., [])
* args.max_testing_k
Maximal number of clusters to test the gap statistic for.
* args.max_final_k
The maximal number of clusters that can be chosen based on the
gap statistic.
* args.recalculate_best_k
Boolean. Set to True if you want the gap statistic (for finding the best K)
to be recalcultaed in the current run.
After calculation, the calculated best K will be saved to files,
and used by the code until the next time you decide to recalculate them,
or if the best K files are deleted. If no best K files are found, will
recalculate best K anyway.
* args.seed
Seed for random numbers stream set before cytomod calculations.
The code was written using the Anaconda3 Python interpreter and packages.
Recommended versions: Python 3.7.1, Pandas 0.23.4, Numpy 1.16.2
The palettable module (https://pypi.org/project/palettable/) must also be installed.
use: pip install palettable
'''
########### ------------ Imports & folders ------------- ###########
import os
import sys
import pandas as pd
sys.path.append(os.getcwd())
sys.path.append(os.path.join(os.getcwd(), 'cytomod', 'otherTools'))
import matplotlib.pyplot as plt
import cytomod
import cytomod.run_gap_statistic as gap_stat
import cytomod.assoc_to_outcome as outcome
from cytomod import plotting as cyplot
from hclusterplot import plotHColCluster
import tools
import numpy as np
import random
########### ------------------- Define manual arguments ----------------- ###########
args = tools.Object()
args.name_data = 'FLU09'
args.name_compartment = 'Plasma'
args.log_transform = True
args.max_testing_k = 8
args.max_final_k = 6 # Must be <= max_testing_k
args.recalculate_modules = False
args.outcomes = ['FluPositive'] # names of outcome columns
args.logistic = True # True if outcomes are binary. False if outcomes are continuous. **## see "associations" -> "output figures" for correct definition of colorscale_value and colorscale_labels variables
args.covariates = ['Age'] # names of regression covariates to control for
args.log_column_names = ['Age'] # or empty list: []
args.cytokines = None # if none, will take all
args.seed = 1234
########### ------------------- Define Output Folders ----------------- ###########
# Create output folders (if they don't already exist)
args.path_files = os.path.join(os.getcwd(), 'data_files')
args.paths = {'files': os.path.join(os.getcwd(), 'data_files'),
'data': os.path.join(os.getcwd(), 'data_files', 'data'),
'gap_statistic': os.path.join(os.getcwd(), 'data_files', 'output', 'gap_statistic'),
'clustering': os.path.join(os.getcwd(), 'data_files', 'output', 'clustering'),
'clustering_info': os.path.join(os.getcwd(), 'data_files', 'output', 'clustering', 'info'),
'clustering_figures': os.path.join(os.getcwd(), 'data_files', 'output', 'clustering', 'figures'),
'correlation_figures': os.path.join(os.getcwd(), 'data_files', 'output', 'correlations'),
'association_figures': os.path.join(os.getcwd(), 'data_files', 'output', 'associations'),
}
tools.create_folder(args.paths['gap_statistic'])
tools.create_folder(args.paths['clustering_info'])
tools.create_folder(args.paths['clustering_figures'])
tools.create_folder(args.paths['correlation_figures'])
tools.create_folder(args.paths['association_figures'])
########### ------------------- Assert args are valid ----------------- ###########
assert type(args.name_data) is str
assert type(args.name_compartment) is str
assert type(args.log_transform) is bool
assert type(args.logistic) is bool
assert type(args.max_testing_k) is int
assert type(args.max_final_k) is int
assert args.max_final_k <= args.max_testing_k
assert type(args.outcomes) is list
assert type(args.covariates) is list
for col_name in args.outcomes + args.covariates + args.log_column_names:
assert type(col_name) is str
tools.assert_column_exists_in_path(os.path.join(args.paths['data'], 'patient_data.xlsx'),
col_name)
########### ------------ Get data ------------- ###########
# cytokines
cy_data = tools.read_excel(os.path.join(args.paths['data'], 'cytokine_data.xlsx'),
indexCol=0)
cy_data.dropna(axis='index', how='all', inplace=True)
if args.cytokines is None:
args.cytokines = list(cy_data.columns)
else:
cy_data = cy_data[args.cytokines]
# patients info
if args.outcomes != []:
patient_data = tools.read_excel(os.path.join(args.paths['data'], 'patient_data.xlsx'),
indexCol=0)
patient_data.dropna(axis='index', how='all', inplace=True)
# Check if args.logistic flag is correct for all outcomes defined in args.outcomes
for outcome_col in args.outcomes:
is_logistic = np.isin(patient_data[outcome_col].unique(), [0, 1]).all() # checks if the data in outcomes column is binary (0,1 or true,false)
if args.logistic != is_logistic: # mismatch! check which case
if args.logistic:
raise Exception('args.logistic defined as True. '
'However, outcome variable ' + outcome_col + ' seems '
'to be continuous and not binary. Please check and fix!')
else:
raise Exception('args.logistic defined as False. '
'However, outcome variable ' + outcome_col + ' seems '
'to be binary and not continuous. Please check and fix!')
# log transform cytokines and args.log_column_names
if args.log_transform:
cy_data = np.log10(cy_data)
if args.log_column_names != [] and args.outcomes != []:
for col_name in args.log_column_names:
new_col_name = 'log_' + col_name
# log transform variable
patient_data[new_col_name] = np.log10(patient_data[col_name])
# replace column with new log transformed column
if col_name in args.covariates:
args.covariates.remove(col_name)
args.covariates.append(new_col_name)
########### ------------ Adjust and Cluster ------------- ###########
do_recalculate = args.recalculate_modules or \
not os.path.exists(os.path.join(args.paths['clustering'], 'cyto_mod_adj.dill'))
# Get best K. If first time or args.recalculate_modules=True - compute best K. Otherwise - read from file.
if do_recalculate:
random.seed(args.seed)
cyto_mod_adj = cytomod.cytomod_class(args.name_data, args.name_compartment, True, cy_data)
cyto_mod_abs = cytomod.cytomod_class(args.name_data, args.name_compartment, False, cy_data)
bestK = {}
bestK['adj'] = gap_stat.getBestK(cyto_mod_adj.cyDf,
max_testing_k = args.max_testing_k,
max_final_k=args.max_final_k,
save_fig_path=os.path.join(args.paths['gap_statistic'], 'gap_stat_adj.png'))
bestK['abs'] = gap_stat.getBestK(cyto_mod_abs.cyDf,
max_testing_k=args.max_testing_k,
max_final_k=args.max_final_k,
save_fig_path=os.path.join(args.paths['gap_statistic'], 'gap_stat_abs.png'))
tools.write_DF_to_excel(os.path.join(args.paths['clustering'], 'bestK.xlsx'), bestK)
# Cluster
cyto_mod_adj.cluster_cytokines(K=bestK['adj'])
cyto_mod_abs.cluster_cytokines(K=bestK['abs'])
tools.write_to_dill(os.path.join(args.paths['clustering'], 'cyto_mod_adj.dill'), cyto_mod_adj)
tools.write_to_dill(os.path.join(args.paths['clustering'], 'cyto_mod_abs.dill'), cyto_mod_abs)
else:
# Get modules from storage
bestK = tools.read_excel(os.path.join(args.paths['clustering'], 'bestK.xlsx'))
bestK = dict(bestK['value'])
cyto_mod_adj = tools.read_from_dill(os.path.join(args.paths['clustering'], 'cyto_mod_adj.dill'))
cyto_mod_abs = tools.read_from_dill(os.path.join(args.paths['clustering'], 'cyto_mod_abs.dill'))
cyto_modules = {'adj': cyto_mod_adj, 'abs': cyto_mod_abs}
########### ------------ Output clustering results ------------- ###########
# Output clustering results
if do_recalculate:
for cyto_object in cyto_modules.values():
cyplot.plotMeanCorr(cyto_object.withMean, cyto_object.meanS.name,
cyList=sorted(cyto_object.cyDf.columns), figsize=(10, 6),
save_path=os.path.join(args.paths['correlation_figures'],
'%s_cy_mean_correlation.png' % cyto_object.name))
plotHColCluster(cyto_object.cyDf, method='complete',
metric='pearson-signed', figsize=(10, 6),
save_path=os.path.join(args.paths['correlation_figures'],
'%s_correlation_heatmap.png' % cyto_object.name))
cytomod.io.write_modules(cyto_object, args.paths['clustering_info'])
cytomod.io.plot_modules(cyto_object, args.paths['clustering_figures'],
heatmap_figsize=(10, 6))
########### ------------ Associations ------------- ###########
# Analyze associations
if args.outcomes != []:
df_outcomes = patient_data[args.outcomes + args.covariates].join(cy_data)
#### Absolute outcomes calculation
mod_outcome_abs_df = outcome.outcomeAnalysis(cyto_modules['abs'], patient_data,
analyzeModules=True,
outcomeVars=args.outcomes,
adjustmentVars=args.covariates,
logistic=args.logistic,
standardize=True)
cy_outcome_abs_df = outcome.outcomeAnalysis(cyto_modules['abs'], patient_data,
analyzeModules=False,
outcomeVars=args.outcomes,
adjustmentVars=args.covariates,
logistic=args.logistic,
standardize=True)
#### Adjusted outcomes calculation
mod_outcome_adj_df = outcome.outcomeAnalysis(cyto_modules['adj'], patient_data,
analyzeModules=True,
outcomeVars=args.outcomes,
adjustmentVars=args.covariates,
logistic=args.logistic,
standardize=True)
cy_outcome_adj_df = outcome.outcomeAnalysis(cyto_modules['adj'], patient_data,
analyzeModules=False,
outcomeVars=args.outcomes,
adjustmentVars=args.covariates,
logistic=args.logistic,
standardize=True)
########### ------------ Output Figures ------------- ###########
# If args.logistic = False, these variables must be symmetric around 0.
# For example:
# colorscale_values = [-0.8, -0.4, 0, 0.4, 0.8]
# colorscale_labels = [-0.8, -0.4, 0, 0.4, 0.8]
# If args.logistic = True, these variables must be symmetric around 1.
# For example:
# colorscale_values = [1 / 2.5, 1 / 2, 1 / 1.5, 1, 1.5, 2, 2.5]
# colorscale_labels = ['1/2.5', '1/2', '1/1.5', 1, 1.5, 2, 2.5]
colorscale_values = [1 / 2.5, 1 / 2, 1 / 1.5, 1, 1.5, 2, 2.5]
colorscale_labels = ['1/2.5', '1/2', '1/1.5', 1, 1.5, 2, 2.5]
# Does colorscale_values range include all regression coefficients issued by outcomeAnalysis?
outcome.check_colorscale_range(colorscale_values, args.logistic,
cy_outcome_abs_df, mod_outcome_abs_df, cy_outcome_adj_df, mod_outcome_adj_df)
#### Absolute
outcome.plotResultSummary(cyto_modules['abs'],
mod_outcome_abs_df,
cy_outcome_abs_df,
args.outcomes,
logistic=args.logistic,
fdr_thresh_plot=0.2,
compartmentName=args.name_compartment,
figsize=(6,9),
scale_values=colorscale_values,
scale_labels=colorscale_labels,
save_fig_path=os.path.join(args.paths['association_figures'], 'associations_abs.png'))
#### Adjusted
outcome.plotResultSummary(cyto_modules['adj'],
mod_outcome_adj_df,
cy_outcome_adj_df,
args.outcomes,
logistic=args.logistic,
fdr_thresh_plot=0.2,
compartmentName=args.name_compartment,
figsize=(6,9),
scale_values=colorscale_values,
scale_labels=colorscale_labels,
save_fig_path=os.path.join(args.paths['association_figures'], 'associations_adj.png'))
########### ------------ Output Tables ------------- ###########
# Adjusted modules
outcome.printTable(mod_outcome_adj_df,
title=args.name_compartment + ' (Adjusted)',
fdr_output_limit=1, fwer_output_limit=1, pval_output_limit=1,
output_file_path=os.path.join(args.paths['association_figures'], 'associations_adj_mod_pvals.pdf'))
# Absolute modules
outcome.printTable(mod_outcome_abs_df,
title=args.name_compartment + ' (Absolute)',
fdr_output_limit=1, fwer_output_limit=1, pval_output_limit=1,
output_file_path=os.path.join(args.paths['association_figures'], 'associations_abs_mod_pvals.pdf'))
# Adjusted cytokines
outcome.printTable(cy_outcome_adj_df,
title=args.name_compartment + ' (Adjusted)',
fdr_output_limit=1, fwer_output_limit=1, pval_output_limit=1,
output_file_path=os.path.join(args.paths['association_figures'], 'associations_adj_cy_pvals.pdf'))
# Absolute cytokines
outcome.printTable(cy_outcome_abs_df,
title=args.name_compartment + ' (Absolute)',
fdr_output_limit=1, fwer_output_limit=1, pval_output_limit=1,
output_file_path=os.path.join(args.paths['association_figures'], 'associations_abs_cy_pvals.pdf'))