-
Notifications
You must be signed in to change notification settings - Fork 2
/
decoder.cpp
540 lines (480 loc) · 15.8 KB
/
decoder.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
/**
* WasmDecoder - static SIXEL band decoder.
*
* Copyright (c) 2021 Joerg Breitbart.
* @license MIT
*/
// cmdline overridable defines
#ifndef CHUNK_SIZE
#define CHUNK_SIZE 4096
#endif
#ifndef PALETTE_SIZE
#define PALETTE_SIZE 256
#endif
#ifndef MAX_WIDTH
#define MAX_WIDTH 4096
#endif
// internal defines
#define ST_DATA 0
#define ST_COMPRESSION 33
#define ST_ATTR 34
#define ST_COLOR 35
#define PARAM_SIZE 8
#define LV0 0
#define LV1 1
#define LV2 2
#define M0 0
#define M1 1
#define M2 2
/**
* static parser state
*/
static struct {
// exposed entries (when changed also needs changes in JS)
long long fill_color;
int width;
int height;
int r_num;
int r_denom;
int r_width;
int r_height;
int truncate;
int level; // LV0 undecided, LV1 level1, LV2 level2
int mode; // M0 undecided, M1 level1 or !truncate, M2 level2 + truncate
int palette_length;
// internal or individually exposed
int abort;
int cleared_width;
int real_width;
int band_height;
int state;
int color;
int cursor;
int p_length;
int params[PARAM_SIZE];
int palette[PALETTE_SIZE];
char chunk[CHUNK_SIZE + 1] __attribute__((aligned(16)));
int p0[MAX_WIDTH + 4] __attribute__((aligned(16)));
int p1[MAX_WIDTH + 4] __attribute__((aligned(16)));
int p2[MAX_WIDTH + 4] __attribute__((aligned(16)));
int p3[MAX_WIDTH + 4] __attribute__((aligned(16)));
int p4[MAX_WIDTH + 4] __attribute__((aligned(16)));
int p5[MAX_WIDTH + 4] __attribute__((aligned(16)));
} __attribute__((aligned(16))) ps;
/**
* Exported/imported functions.
*/
extern "C" {
void* get_state_address() { return &ps.fill_color; }
void* get_chunk_address() { return &ps.chunk[0]; }
void* get_p0_address() { return &ps.p0[4]; }
void* get_palette_address() { return &ps.palette[0]; }
void init(int sixel_color, int fill_color, unsigned int palette_length, int truncate);
void decode(int start, int end);
int current_width();
int current_height();
// imported
int handle_band(int width);
int mode_parsed(int mode);
}
/**
* Sixel painting.
*/
// Put single sixel at current cursor position.
static inline void put_single(unsigned int code, int color, unsigned int cursor) {
if (cursor < MAX_WIDTH) {
ps.p0[(code >> 0 & 1) * cursor] = color;
ps.p1[(code >> 1 & 1) * cursor] = color;
ps.p2[(code >> 2 & 1) * cursor] = color;
ps.p3[(code >> 3 & 1) * cursor] = color;
ps.p4[(code >> 4 & 1) * cursor] = color;
ps.p5[(code >> 5 & 1) * cursor] = color;
}
}
// Put sixel n-times from current cursor position.
static inline void put(int code, int color, unsigned int n, unsigned int cursor) {
if (code && cursor < MAX_WIDTH) {
if (cursor + n >= MAX_WIDTH) {
n = MAX_WIDTH - cursor;
}
if (code >> 0 & 1) { int *pp = ps.p0 + cursor; int r = n; while (r--) *pp++ = color; }
if (code >> 1 & 1) { int *pp = ps.p1 + cursor; int r = n; while (r--) *pp++ = color; }
if (code >> 2 & 1) { int *pp = ps.p2 + cursor; int r = n; while (r--) *pp++ = color; }
if (code >> 3 & 1) { int *pp = ps.p3 + cursor; int r = n; while (r--) *pp++ = color; }
if (code >> 4 & 1) { int *pp = ps.p4 + cursor; int r = n; while (r--) *pp++ = color; }
if (code >> 5 & 1) { int *pp = ps.p5 + cursor; int r = n; while (r--) *pp++ = color; }
}
}
/**
* Color handling.
*/
// Normalize %-based SIXEL RGB 0..100 to channel byte values 0..255.
// Note: does some rounding in integer arithmetics.
static inline int normalize_rgb(int r, int g, int b) {
return 0xFF000000 | ((b * 256 - b + 50) / 100) << 16 | ((g * 256 - g + 50) / 100) << 8 | ((r * 256 - r + 50) / 100);
}
// hue to channel value helper.
static inline float h2c(float t1, float t2, float c) {
if (c < 0) c += 1;
else if (c > 1) c -= 1;
return c < 0.1666666716f // c * 6 < 1
? t2 + (t1 - t2) * 6 * c
: c < 0.5f // c * 2 < 1
? t1
: c < 0.6666666865f // c * 3 < 2
? t2 + (t1 - t2) * (4 - c * 6)
: t2;
}
// Normalize SIXEL HLS to RGBA8888.
// Incoming values are integer in: H - 0..360 (hue turned by 240°), L - 0..100, S - 0..100.
static inline int normalize_hls(int hi, int li, int si) {
if (!si) {
return normalize_rgb(li, li, li);
}
float h = ((float) (hi + 240 % 360)) / 360;
float l = ((float) li) / 100;
float s = ((float) si) / 100;
float t1 = l < 0.5f ? l * (1 + s) : l * (1 - s) + s;
float t2 = l * 2 - t1;
unsigned char r = 255 * h2c(t1, t2, h + 0.3333333433f) + 0.5f; // + 1.0f / 3
unsigned char g = 255 * h2c(t1, t2, h) + 0.5f;
unsigned char b = 255 * h2c(t1, t2, h - 0.3333333433f) + 0.5f; // - 1.0f / 3
return 0xFF000000 | b << 16 | g << 8 | r;
}
// Static color converter fp array to avoid branching.
typedef int (*color_converter)(int, int, int);
static const color_converter COLOR_CONVERTERS[2] = { &normalize_hls, &normalize_rgb };
// Tiny modulo optimization.
static inline int fastmod(unsigned int value, unsigned int ceil) {
return value < ceil ? value : value % ceil;
}
// Apply color request.
static inline int apply_color(int color) {
if (ps.p_length == 1) {
color = ps.palette[fastmod(ps.params[0], ps.palette_length)];
} else if (ps.p_length == 5
&& ps.params[1] == 1 ? ps.params[2] <= 360 : ps.params[2] <= 100
&& ps.params[3] <= 100
&& ps.params[4] <= 100)
{
if (ps.params[1] && ps.params[1] < 3) {
ps.palette[fastmod(ps.params[0], ps.palette_length)] = COLOR_CONVERTERS[ps.params[1] - 1](
ps.params[2], ps.params[3], ps.params[4]);
}
color = ps.palette[fastmod(ps.params[0], ps.palette_length)];
}
return color;
}
/**
* Pixel buffer reset handling clearing with fill_color.
*/
// Clear next chunk in pixel buffers (m1). Hardcoded to 128px width.
static inline void clear_next() {
long long *blueprint = (long long *) &ps.p0[ps.cleared_width];
for (int i = 0; i < 64; ++i) blueprint[i] = ps.fill_color;
__builtin_memcpy(&ps.p1[ps.cleared_width], blueprint, 512);
__builtin_memcpy(&ps.p2[ps.cleared_width], blueprint, 512);
__builtin_memcpy(&ps.p3[ps.cleared_width], blueprint, 512);
__builtin_memcpy(&ps.p4[ps.cleared_width], blueprint, 512);
__builtin_memcpy(&ps.p5[ps.cleared_width], blueprint, 512);
ps.cleared_width += 128;
}
// Clear pixel buffers for next line processing (m1). Hardcoded to 128px chunk.
static inline void reset_line_m1() {
ps.real_width = 4;
ps.band_height = 0;
// fill 128 pixels in p0 as copy source
long long *blueprint = (long long *) &ps.p0[4];
for (int i = 0; i < 64; ++i) blueprint[i] = ps.fill_color;
// clear remaining in p0 .. p5
int parts128 = (ps.width + 127) / 128;
for (int i = 1; i < parts128; ++i) __builtin_memcpy(&ps.p0[4 + i * 128], blueprint, 512);
for (int i = 0; i < parts128; ++i) __builtin_memcpy(&ps.p1[4 + i * 128], blueprint, 512);
for (int i = 0; i < parts128; ++i) __builtin_memcpy(&ps.p2[4 + i * 128], blueprint, 512);
for (int i = 0; i < parts128; ++i) __builtin_memcpy(&ps.p3[4 + i * 128], blueprint, 512);
for (int i = 0; i < parts128; ++i) __builtin_memcpy(&ps.p4[4 + i * 128], blueprint, 512);
for (int i = 0; i < parts128; ++i) __builtin_memcpy(&ps.p5[4 + i * 128], blueprint, 512);
ps.cleared_width = 4 + parts128 * 128;
}
// Clear pixel buffers for next line processing (m2). Clears ps.width pixels.
static inline void reset_line_m2() {
long long *blueprint = (long long *) &ps.p0[4];
int l = (ps.width - 3) / 2; // -4 because we added 4 in init, +1 for ceil in 8byte
for (int i = 0; i < l; ++i) blueprint[i] = ps.fill_color;
__builtin_memcpy(&ps.p1[4], blueprint, ps.width * 4);
__builtin_memcpy(&ps.p2[4], blueprint, ps.width * 4);
__builtin_memcpy(&ps.p3[4], blueprint, ps.width * 4);
__builtin_memcpy(&ps.p4[4], blueprint, ps.width * 4);
__builtin_memcpy(&ps.p5[4], blueprint, ps.width * 4);
}
/**
* Decoders
*
* - m1: level 1 images w'o raster attributes and level 1/2 with truncate=false
* Does width expansion and clearing on the fly, thus lines may have different
* pixels output lengths.
*
* - m2: level 2 images truncate=false
* Optimizes width handling and clearing by always assuming the raster width
* truncating excess pixels. While this is not 100% spec conform,
* it is what most ppl want. The optimization gives a 15-20% speed bonus.
*
* - raster: decoder for raster attributes
* Decoder running first after init to determine, whether the image data
* contains raster attributes. Calls into m1 or m2 afterwards.
*/
void decode_raster(int start, int end);
void decode_m1(int start, int end);
void decode_m2(int start, int end);
typedef void (*decode_func)(int, int);
static const decode_func DECODERS[3] = { &decode_raster, &decode_m1, &decode_m2 };
void decode_m1(int start, int end) {
int cur = ps.cursor;
int state = ps.state;
int color = ps.color;
char *c = &ps.chunk[start];
char *c_end = &ps.chunk[end];
*c_end = 0xFF;
while (c < c_end) {
int code = *c++ & 0x7F;
// digits
if (unsigned(code - 48) < 10) {
int *p = &ps.params[ps.p_length - 1];
do {
*p = *p * 10 + code - 48;
code = *c++ & 0x7F;
} while (unsigned(code - 48) < 10);
}
// sixels
if (unsigned(code - 63) < 64) {
if (state != ST_DATA) {
if (state == ST_COMPRESSION) {
int k = ps.params[0] ? ps.params[0] : 1;
while (cur + k >= ps.cleared_width && ps.cleared_width < MAX_WIDTH) clear_next();
put(code - 63, color, k, cur);
ps.band_height |= code - 63;
cur += k;
code = *c++ & 0x7F;
} else {
color = apply_color(color);
}
state = ST_DATA;
}
while (unsigned(code - 63) < 64) {
if (cur >= ps.cleared_width && ps.cleared_width < MAX_WIDTH) clear_next(); // FIXME: MAX_WIDTH is exp here
put_single(code - 63, color, cur++);
ps.band_height |= code - 63;
code = *c++ & 0x7F;
};
}
// compression and color
if (code == ST_COMPRESSION || code == ST_COLOR) {
if (state == ST_COLOR) color = apply_color(color);
ps.params[0] = 0;
ps.p_length = 1;
state = code;
} else
// CR and LF
if (code == '$') {
ps.real_width = cur > ps.real_width ? cur : ps.real_width;
ps.real_width = ps.real_width < MAX_WIDTH ? ps.real_width : MAX_WIDTH;
cur = 4;
} else
if (code == '-') {
ps.real_width = cur > ps.real_width ? cur : ps.real_width;
ps.real_width = ps.real_width < MAX_WIDTH ? ps.real_width : MAX_WIDTH;
ps.cursor = ps.real_width; // explicit update to avoid conflicts if current_width() is called in handle_band
if (handle_band(ps.real_width - 4)) {
ps.abort = 1;
ps.cursor = ps.real_width = 4; // same - to fix current_width() after breaking
return;
}
reset_line_m1();
cur = 4;
} else
// new param
if (code == ';') {
if (ps.p_length < PARAM_SIZE) {
ps.params[ps.p_length++] = 0;
}
}
}
ps.cursor = cur;
ps.state = state;
ps.color = color;
}
void decode_m2(int start, int end) {
int cur = ps.cursor;
int state = ps.state;
int color = ps.color;
char *c = &ps.chunk[start];
char *c_end = &ps.chunk[end];
*c_end = 0xFF;
while (c < c_end) {
int code = *c++ & 0x7F;
// digits
if (unsigned(code - 48) < 10) {
int *p = &ps.params[ps.p_length - 1];
do {
*p = *p * 10 + code - 48;
code = *c++ & 0x7F;
} while (unsigned(code - 48) < 10);
}
// sixels
if (unsigned(code - 63) < 64) {
if (state != ST_DATA) {
if (state == ST_COMPRESSION) {
int k = ps.params[0] ? ps.params[0] : 1;
put(code - 63, color, k, cur);
cur += k;
code = *c++ & 0x7F;
} else {
color = apply_color(color);
}
state = ST_DATA;
}
while (unsigned(code - 63) < 64) {
put_single(code - 63, color, cur++);
code = *c++ & 0x7F;
};
}
// compression and color
if (code == ST_COMPRESSION || code == ST_COLOR) {
if (state == ST_COLOR) color = apply_color(color);
ps.params[0] = 0;
ps.p_length = 1;
state = code;
} else
// CR and LF
if (code == '$') {
cur = 4;
} else
if (code == '-') {
if (handle_band(ps.width - 4)) {
ps.abort = 1;
return;
}
reset_line_m2();
cur = 4;
} else
// new param
if (code == ';') {
if (ps.p_length < PARAM_SIZE) {
ps.params[ps.p_length++] = 0;
}
}
}
ps.cursor = cur;
ps.state = state;
ps.color = color;
}
void decode_raster(int start, int end) {
char *c = &ps.chunk[start];
char *c_end = &ps.chunk[end];
while (c < c_end) {
int code = *c++ & 0x7F;
if (ps.state == ST_DATA) {
if (code == ST_ATTR) {
ps.params[0] = 0;
ps.p_length = 1;
ps.state = ST_ATTR;
} else
if (unsigned(code - 63) < 64 || code == 33 || code == 35 || code == 36 || code == 45) {
ps.level = LV1;
ps.mode = M1;
ps.r_num = 0;
ps.r_denom = 0;
ps.r_width = 0;
ps.r_height = 0;
break;
}
} else
if (ps.state == ST_ATTR) {
if (unsigned(code - 48) < 10) {
ps.params[ps.p_length - 1] = ps.params[ps.p_length - 1] * 10 + code - 48;
} else
if (code == ';') {
if (ps.p_length < PARAM_SIZE) {
ps.params[ps.p_length++] = 0;
}
} else
if (ps.p_length == 4) {
ps.level = LV2;
ps.mode = ps.truncate ? M2 : M1;
ps.r_num = ps.params[0];
ps.r_denom = ps.params[1];
ps.r_width = ps.params[2]; // investigate: Should omitted P3/P4 default to 1 as well?
ps.r_height = ps.params[3];
ps.state = ST_DATA;
ps.width = ps.truncate ? (ps.r_width < MAX_WIDTH ? ps.r_width : MAX_WIDTH) + 4 : 0;
ps.height = ps.truncate ? ps.r_height : 0;
break;
}
// error : some image have broken raster attributes defining not all values, e.g. "1;1 ...
// recovery: set mode to M1, save any seen attributes, reset to state ST_DATA
if (unsigned(code - 63) < 64 || code == 33 || code == 35 || code == 36 || code == 45) {
ps.level = LV1;
ps.mode = M1;
ps.r_num = ps.p_length > 0 ? ps.params[0] : 0;
ps.r_denom = ps.p_length > 1 ? ps.params[1] : 0;
ps.r_width = ps.p_length > 2 ? ps.params[2] : 0;
ps.r_height = 0;
ps.state = ST_DATA;
break;
}
}
}
if (ps.mode) {
if (ps.mode == M2) reset_line_m2();
else reset_line_m1();
ps.abort = mode_parsed(ps.mode);
if (!ps.abort) DECODERS[ps.mode](start, end);
}
}
/**
* API functions.
*/
// Initialize parser state for new SIXEL image.
void init(int sixel_color, int fill_color, unsigned int palette_length, int truncate) {
ps.state = ST_DATA;
ps.color = sixel_color;
ps.cursor = 4;
ps.palette_length = (palette_length < PALETTE_SIZE) ? palette_length : PALETTE_SIZE;
ps.params[0] = 0;
ps.p_length = 1;
ps.truncate = truncate;
ps.level = LV0;
ps.mode = M0;
ps.state = ST_DATA;
ps.fill_color = ((unsigned long long) fill_color) << 32 | (unsigned int) fill_color;
ps.r_num = 0;
ps.r_denom = 0;
ps.r_width = 0;
ps.r_height = 0;
ps.width = 0;
ps.height = 0;
ps.band_height = 0;
ps.abort = 0;
}
// Decode data in ps.chunk from start to end (exclusive).
void decode(int start, int end) {
if (ps.abort) return;
DECODERS[ps.mode](start, end);
}
// Width of the current band.
int current_width() {
if (ps.mode == M1) {
ps.real_width = ps.cursor > ps.real_width ? ps.cursor : ps.real_width;
ps.real_width = ps.real_width < MAX_WIDTH ? ps.real_width : MAX_WIDTH;
return ps.real_width - 4;
}
if (ps.mode == M2) {
return ps.width - 4;
}
return 0;
}
// Height of the current band (M1 only).
int current_height() {
int x = ps.band_height;
return x & 32 ? 6 : x & 16 ? 5 : x & 8 ? 4 : x & 4 ? 3 : x & 2 ? 2 : x & 1 ? 1 : 0;
}