-
Notifications
You must be signed in to change notification settings - Fork 107
/
Copy pathbooks11-13-en-latex.tex
1880 lines (1514 loc) · 92.8 KB
/
books11-13-en-latex.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[booklanguage=english]{byrnebook}
%\usepackage{lua-visual-debug}
\begin{document}
\setcounter{part}{10}
\part{Book XI}
\starttheorem{Prop. I. Theor.}\label{prop:XI.I}
\defineNewPicture{
numeric w, r;
w := 3cm;
r := 1/3w;
byPair(A, B, C, D);
A := (-r, 0);
B := (0, 0);
D := (r, 0);
C := B shifted (dir(30)*4/3r);
byPointXYZDefine.P(-1/2w, 0, -1/2w);
byPointXYZDefine.Q(1/2w, 0, -1/2w);
byPointXYZDefine.R(1/2w, 0, 1/2w);
byPointXYZDefine.S(-1/2w, 0, 1/2w);
byPointLabelRemove(P,Q,R,S);
byCircleDefineR.B(B, r, byblue, 0, 0, 0);
circleSpaceRotation.B := (0, 0, 0);
byArcDefine.BAC(B, C, A)(r, byblue, 0, 0, -1, 0);
byArcDefine.BDC(B, D, C)(r, byred, 0, 0, -1, 0);
byArcDefine.BAD(B, A, D)(r, byblue, 1, 0, -1, 0);
byLineDefine(A, B, byblue, 0, 0);
byLineDefine(B, C, byblue, 1, 0);
bySetProjection(15, 30, 0);
draw byNamedArcExact(BAD);
draw byPolygon(P, Q, R, S)(byyellow);
draw byNamedArcExact(BAC,BDC);
draw byLine(B, D, byred, 0, 0);
draw byNamedLineSeq(0)(AB,BC);
draw byLabelsOnPolygon(D, B, A)(2, 0);
draw byLabelLineEnd(C, B, 0);
draw byLabelLineEnd(A, B, 0);
draw byLabelLineEnd(D, B, 0);
}
\drawCurrentPictureInMargin
\problem{A}{ part}{of a straight line cannot be in the plane of reference and a part in a plane more elevated.}
For, if possible, let a part \drawUnitLine{AB} of the straight line \drawUnitLine{AB,BC} be in the plane of reference \drawPolygon{PQRS}, and a part \drawUnitLine{BC} be in a plane more elevated.
There will then be in \drawPolygon{PQRS} some straight line continuous with \drawUnitLine{AB} in a straight line. Let it be \drawUnitLine{BD}.
Therefore \drawUnitLine{AB} is a common segment of the two straight lines \drawUnitLine{AB,BC} and \drawUnitLine{AB,BD}, which is impossible, inasmuch as, if we describe a circle \drawArc{BAC,BDC,BAD} with centre \drawPointL{B} and radius \drawUnitLine{AB}, then the diameters will cut off unequal circumferences \drawArc{BAC} and \drawArc{BAC,BDC} of the circle.
Therefore, a part of a straight line cannot be in the plane of reference and a part in a plane more elevated.
\qed
\starttheorem{Prop. II. Theor.}\label{prop:XI.II}
\defineNewPicture{
pair A, B, C, D, E, F, G, H, K;
A := (0, 3cm);
B := (3cm, 0);
C := (0, 0);
D := (3cm, 3cm);
E = whatever[A, B] = whatever[C, D];
F := 2/5[E, C];
G := 2/5[E, B];
H := 1/3[C, B];
K := 2/3[C, B];
byLineDefine(A, E, byblue, 0, 0);
byLineDefine(E, G, byblue, 1, 0);
byLineDefine(G, B, byblue, 1, 0);
byLineDefine(D, E, byred, 0, 0);
byLineDefine(E, F, byred, 1, 0);
byLineDefine(F, C, byred, 1, 0);
byLineDefine(C, H, byblack, 0, 0);
byLineDefine(H, K, byblack, 0, 0);
byLineDefine(K, B, byblack, 0, 0);
byLineDefine(F, H, byyellow, 0, 0);
byLineDefine(G, K, byyellow, 0, 0);
byLineDefine(F, G, byblack, 1, 0);
draw byNamedLine(FG,FH,GK);
draw byNamedLineSeq(0)(AE,EG, GB,KB,HK,CH,FC,EF,DE);
draw byLabelsOnPolygon(E,G,B,K,H,C,F)(0, 0);
draw byLabelLineEnd(A, E, 0);
draw byLabelLineEnd(D, E, 0);
}
\drawCurrentPictureInMargin
\problem{I}{f}{two straight lines cut one another, they are in one plane, and every triangle is in one plane.}
For let the two straight lines \drawUnitLine{AB} and \drawUnitLine{CD} cut one another at the point \drawPointL{E}.
I say that \drawUnitLine{AB} and \drawUnitLine{CD} are in one plane, and every triangle is in one plane.
Take the points \drawPointL{F} and \drawPointL{G} at random on \drawUnitLine{EC} and \drawUnitLine{EB}, let \drawUnitLine{CB} and \drawUnitLine{FG} be joined, and let \drawUnitLine{FH} and \drawUnitLine{GK} be drawn across.
I say first that the triangle \drawLine{EB,BC,CE} lies in one plane.
For, if part of the triangle \drawLine{EB,BC,CE}, either \drawLine{FH,HC,CF} or \drawLine{GB,BK,KG}, is in the plane of reference, and the rest in another, then a part also of one of the straight lines \drawUnitLine{EC} or \drawUnitLine{EB} is in the plane of reference, and a part in another.
But, if the part \drawLine{FG,GB,BC,CF} of the triangle \drawLine{EB,BC,CE} is in the plane of reference, and the rest in another, then a part also of both the straight lines \drawUnitLine{EC} and \drawUnitLine{EB} is in the plane of reference and a part in another, which was proved absurd. \byref{prop:XI.I}
Therefore the triangle \drawLine{EB,BC,CE} lies in one plane.
But, in whatever plane the triangle \drawLine{EB,BC,CE} is, each of the straight lines \drawUnitLine{EC} and \drawUnitLine{EB} also is, and in whatever plane each of the straight lines \drawUnitLine{EC} and \drawUnitLine{EB} is, \drawUnitLine{AB} and \drawUnitLine{CD} also are. \byref{prop:XI.I}
Therefore the straight lines \drawUnitLine{AB} and \drawUnitLine{CD} are in one plane; and every triangle is in one plane.
\qed
\starttheorem{Prop. III. Theor.}\label{prop:XI.III}
\defineNewPicture{
numeric w, h;
w := 4cm;
h := 3cm;
byPointXYZDefine.A(1/2w, 0, 0);
byPointXYZDefine.A'(1/2w, h, 0);
byPointXYZDefine.A''(-1/2w, 0, 0);
byPointXYZDefine.A'''(-1/2w, h, 0);
byPointXYZDefine.C(0, 0, -1/2w);
byPointXYZDefine.C'(0, h, -1/2w);
byPointXYZDefine.C''(0, 0, 1/2w);
byPointXYZDefine.C'''(0, h, 1/2w);
byPointXYZDefine.B(0, h, 0);
byPointXYZDefine.D(0, 0, 0);
byPointXYZDefine.F(0, 1/2h, -1/8w);
byPointXYZDefine.E(1/8w, 1/2h, 0);
bySetProjection(-25, 60, 90);
draw byPolygon(B, C''', C'', D)(byred);
draw byPolygon(D, B, A''', A'')(byyellow);
draw byPolygon(D, A, A', B)(byyellow);
draw byPolygon(C, D, B, C')(byred);
draw byLine(D, B, byblack, 0, 0);
draw byArbitraryCurve.BFD(B, F, D)(byblack, 1, 0);
draw byArbitraryCurve.BED(B, E, D)(byblue, 1, 0);
byPointLabelRemove(A',A'',A''',C',C'',C''');
draw byLabelsOnPolygon(C, C', B, A', A, D)(0, 0);
draw byLabelLineEnd(E, F, 0);
draw byLabelLineEnd(F, E, 0);
}
\drawCurrentPictureInMargin
\problem{I}{f}{two planes cut one another, their common section is a straight line.}
For let the two planes \drawPolygon{DBA'''A'',DAA'B} and \drawPolygon{BC'''C''D,CDBC'} cut one another, and let the line \drawUnitLine{DB} be their common section.
I say that the line \drawUnitLine{DB} is a straight line.
For, if not, join the straight line
\drawFromCurrentPicture[middle][lineBED]{
startAutoLabeling;
draw byNamedArbitraryCurve(BED);
stopAutoLabeling;
}
from \drawPointL{B} to \drawPointL{D} in the plane \drawPolygon{DBA'''A'',DAA'B}, and the straight line
\drawFromCurrentPicture[middle][lineBFD]{
startAutoLabeling;
draw byNamedArbitraryCurve(BFD);
stopAutoLabeling;
}
in the plane \drawPolygon{BC'''C''D,CDBC'}.
Then the two straight lines \lineBED\ and \lineBFD\ have the same ends and clearly enclose an area, which is absurd.
$\therefore$ \lineBED\ and \lineBFD\ are not straight lines.
Similarly we can prove that neither will there be any other straight line joined from \drawPointL{B} to \drawPointL{D} except \drawUnitLine{DB}, the common section of the planes \drawPolygon{DBA'''A'',DAA'B} and \drawPolygon{BC'''C''D,CDBC'}.
\qed
\starttheorem{Prop. IV. Theor.}\label{prop:XI.IV}
\defineNewPicture{
numeric w, h, d;
w := 3cm;
h := 3cm;
d := 4cm;
byPair(A, B, C, D, E, G, H);
A := (-1/2w, 1/2h);
B := (1/2w, -1/2h);
C := (1/2w, 1/2h);
D := (-1/2w, -1/2h);
E = whatever[A, B] = whatever[C, D];
G := 1/2[A, D];
H = whatever[E, G] = whatever[B, C];
byPointXYZDefine.F(0, 0, d);
bySetProjection(-60, 0, -35);
byLineDefine(A, E, byred, 0, 0);
byLineDefine(E, B, byred, 1, 0);
byLineDefine(C, E, byblue, 0, 0);
byLineDefine(E, D, byblue, 1, 0);
byLineDefine(E, F, byblack, 0, 1);
byLineDefine(G, E, byyellow, 0, 0);
byLineDefine(E, H, byyellow, 1, 0);
byLineDefine(A, F, byred, 0, 2);
byLineDefine(B, F, byred, 1, 2);
byLineDefine(C, F, byblue, 0, 2);
byLineDefine(D, F, byblue, 1, 2);
byLineDefine(G, F, byyellow, 0, 2);
byLineDefine(H, F, byyellow, 1, 2);
byLineDefine(A, G, byblack, 1, 1);
byLineDefine(G, D, byblack, 1, 2);
byLineDefine(C, H, byblack, 1, 2);
byLineDefine(H, B, byblack, 1, 1);
draw byAngle(D, A, E, byred, 0);
draw byAngle(F, A, D, byyellow, 0);
draw byAngle(A, E, G, byblue, 0);
draw byNamedLine(AG,CH,EF);
draw byNamedLineSeq(0)(AF, CF, CE, AE);
draw byAngle(G, E, F, byblack, 1);
draw byAngle(H, E, F, byblack, 0);
draw byAngle(B, E, H, byblue, 0);
draw byAngle(E, B, C, byred, 1);
draw byAngle(F, B, C, byyellow, 1);
draw byNamedLine(GD,HB);
draw byNamedLineSeq(0)(GF,GE,EH,HF);
draw byNamedLineSeq(0)(DF,ED,EB,BF);
draw byLabelsOnPolygon(F, A, E)(2, 0);
draw byLabelsOnPolygon(D, G, F, C, H, B, E)(0, 0);
}
\drawCurrentPictureInMargin
\problem{I}{f}{a straight line be set up at right angles to two straight lines which cut one another, at their common point of section, it will also be at right angles to the plane passing through them.}
For let a straight line \drawUnitLine{EF} be set up at right angles to the two straight lines \drawUnitLine{AB} and \drawUnitLine{CD} at \drawPointL{E}, the point at which the lines cut one another.
I say that \drawUnitLine{EF} is also at right angles to the plane passing through \drawUnitLine{AB} and \drawUnitLine{CD}.
Cut off \drawUnitLine{AE}, \drawUnitLine{EB}, \drawUnitLine{CE}, and \drawUnitLine{ED} equal to one another. Draw any straight line \drawUnitLine{GH} across through \drawPointL{E} at random. Join \drawUnitLine{AD} and \drawUnitLine{CB}, and join \drawUnitLine{FA}, \drawUnitLine{FG}, \drawUnitLine{FD}, \drawUnitLine{FC}, \drawUnitLine{FH}, and \drawUnitLine{FB} from a point \drawPointL{F} taken at random on \drawUnitLine{EF}. \byref{prop:XI.II,prop:I.III]}
Now, since the two straight lines \drawUnitLine{AE} and \drawUnitLine{ED} equal the two straight lines \drawUnitLine{CE} and \drawUnitLine{EB} and contain equal angles, therefore the base \drawUnitLine{AD} equals the base \drawUnitLine{CB}, and the triangle \drawLine{AE,ED,DA} equals the triangle \drawLine{EC,CB,BE}, so that $\drawAngle{GAE} = \drawAngle{HBE}$. \byref{prop:I.XV,prop:I.IV}
But $\drawAngle{AEG} = \drawAngle{BEH}$, $\therefore$ \drawLine{AE,EG,GA} and \drawLine{BE,EH,HB} are two triangles which have two angles equal to two angles respectively, and one side equal to one side, namely that adjacent to the equal angles, that is to say, $\drawUnitLine{AE} = \drawUnitLine{EB}$. Therefore they also have the remaining sides equals to the remaining sides, that is, $\drawUnitLine{GE} = \drawUnitLine{EH}$, and $\drawUnitLine{AG} = \drawUnitLine{BH}$. \byref{prop:I.XV,prop:I.XXVI}
And, since $\drawUnitLine{AE} = \drawUnitLine{EB}$, while \drawUnitLine{FE} is common and at right angles, therefore the base \drawUnitLine{FA} equals the base \drawUnitLine{FB}.
For the same reason, $\drawUnitLine{FC} = \drawUnitLine{FD}$. \byref{prop:I.IV}
And, since $\drawUnitLine{AD} = \drawUnitLine{CB}$, and $\drawUnitLine{FA} = \drawUnitLine{FB}$, the two sides \drawUnitLine{FA} and \drawUnitLine{AD} equal the two sides \drawUnitLine{FB} and \drawUnitLine{BC} respectively, and the base \drawUnitLine{FD} was proved equal to the the base \drawUnitLine{FC}, therefore the angle \drawAngle{FAD} also equals the angle \drawAngle{FBC}. \byref{prop:I.VIII}
And since, again, \drawUnitLine{AG} was proved equal to \drawUnitLine{BH}, and further, $\drawUnitLine{FA} = \drawUnitLine{FB}$, the two sides \drawUnitLine{FA} and \drawUnitLine{AG} equal the two sides \drawUnitLine{FB} and \drawUnitLine{BH}, and the angle \drawAngle{FAG} was proved equal to the angle \drawAngle{HBF}, therefore the base $\drawUnitLine{FG} = \drawUnitLine{FH}$. \byref{prop:I.IV}
Again, since \drawUnitLine{GE} was proved equal to \drawUnitLine{EH}, and \drawUnitLine{EF} is common, the two sides \drawUnitLine{GE} and \drawUnitLine{EF} equal the two sides \drawUnitLine{HE} and \drawUnitLine{EF}, and the base \drawUnitLine{FG} equals the base \drawUnitLine{FH}, $\therefore \drawAngle{GEF} = \drawAngle{HEF}$. \byref{prop:I.VIII}
Therefore each of the angles \drawAngle{GEF} and \drawAngle{HEF} is right.
$\therefore$ \drawUnitLine{FE} is at right angles to \drawUnitLine{GH} drawn at random through \drawPointL{E}.
Similarly we can prove that \drawUnitLine{FE} also makes right angles with all the straight lines which meet it and are in the plane of reference.
But a straight line is at right angles to a plane when it makes right angles with all the straight lines which meet it and are in that same plane, therefore \drawUnitLine{FE} is at right angles to the plane of reference. \byref{def:XI.III}
But the plane of reference is the plane through the straight lines \drawUnitLine{AB} and \drawUnitLine{CD}.
Therefore \drawUnitLine{FE} is at right angles to the plane through \drawUnitLine{AB} and \drawUnitLine{CD}.
\qed
\starttheorem{Prop. V. Theor.}\label{prop:XI.V}
\defineNewPicture[1/4]{
numeric w, h, d;
w := 4cm;
h := 3cm;
d := 3cm;
byPair(B, D, E, F, Pnw, Pne, Pse, Psw);
Pnw := (0, 0);
Pne := (w, 0);
Pse := (w, -h);
Psw := (0, -h);
B := (1/4w, -1/2h);
D := B shifted (1/2w, 0);
E := (3/4w, -3/4h);
F := (3/4w, -1/4h);
byPointXYZDefine.A(xpart(B), ypart(B), d);
byPointXYZDefine.C(xpart(F), ypart(F), 1/2d);
byPointXYZDefine.A'(xpart(F), ypart(F), d);
byPointXYZDefine.A''(xpart(F), ypart(F), -1/2d);
byPointXYZDefine.A'''(xpart(B), ypart(B), -1/2d);
byPointLabelRemove(Pnw, Pne, Pse, Psw, A', A'', A''');
bySetProjection(-60, 0, -60);
draw byPolygon(B, F, A'', A''')(byblue);
draw byPolygon(Pnw, Pne, Pse, Psw)(byyellow);
draw byPolygon(A, A', F, B)(byblue);
byLineDefine(A, B, byblack, 0, 0);
byLineDefine(B, C, byred, 0, 0);
byLineDefine(B, D, byblue, 0, 0);
byLineDefine(B, E, byblue, 1, 0);
byLineDefine(B, F, byred, 1, 0);
draw byNamedLine(BC, BD, BF);
draw byNamedLineSeq(0)(AB, BE);
draw byAngle(A, B, C, byred, 0);
draw byAngle(C, B, F, byred, 1);
%draw byAngle(A, B, D, byblack, -1);
%draw byAngle(A, B, E, byblack, -1);
draw byLabelsOnPolygon(B, A, C, F, D, E)(0, 0);
}
\drawCurrentPictureInMargin
\problem{I}{f}{a straight line be set up at right angles to three straight lines which meet one another, at their common point of section, the three straight are in one plane.}
For let a straight line \drawUnitLine{AB} be set up at right angles to the three straight lines \drawUnitLine{BC}, \drawUnitLine{BD} and \drawUnitLine{BE} at their point of meeting at \drawPointL{B}.
I say that \drawUnitLine{BC}, \drawUnitLine{BD}, and \drawUnitLine{BE} are in one plane.
For suppose that they are not, but, if possible, let \drawUnitLine{BD} and \drawUnitLine{BE} be in the plane of reference \drawPolygon[middle][planeOfReference]{PnwPnePsePsw} and \drawUnitLine{BC} in one more elevated. Produce the plane \drawPolygon[middle][otherPlane]{AA'FB,BFA''A'''} through \drawUnitLine{AB} and \drawUnitLine{BC}. \byref{prop:XI.III}
\otherPlane\ intersects \planeOfReference\ in a straight line. Let the intersection be \drawUnitLine{BF}. Therefore the three straight lines \drawUnitLine{AB}, \drawUnitLine{BC}, and \drawUnitLine{BF} are in one plane \otherPlane, namely that drawn through \drawUnitLine{AB} and \drawUnitLine{BC}.
Now, since \drawUnitLine{AB} is at right angles to each of the straight lines \drawUnitLine{BD} and \drawUnitLine{BE}, therefore \drawUnitLine{AB} is also at right angles to the plane \planeOfReference\ through \drawUnitLine{BD} and \drawUnitLine{BE}. \byref{prop:XI.IV}
But the plane \planeOfReference\ through \drawUnitLine{BD} and \drawUnitLine{BE} is the plane of reference, therefore \drawUnitLine{AB} is at right angles to the plane of reference.
Thus \drawUnitLine{AB} also makes right angles with all the straight lines which meet it and lie in the plane of reference. \byref{def:XI.III}
But \drawUnitLine{BF}, which is the plane of reference, meets it, therefore the angle \drawAngle{FBA} is right. And, by hypothesis, the angle \drawAngle{ABC} is also right, therefore the angle $\drawAngle{FBA} = \drawAngle{ABC}$, and they lie in one plane, which is impossible.
Therefore the straight line \drawUnitLine{BC} is not in a more elevated plane. Therefore the three straight lines \drawUnitLine{BC}, \drawUnitLine{BD}, and \drawUnitLine{BE} are in one plane.
\qed
\starttheorem{Prop. VI. Theor.}\label{prop:XI.VI}
\defineNewPicture{
numeric w, h, d;
w := 4cm;
h := 3cm;
d := 2cm;
byPair(B, D, E, Pnw, Pne, Pse, Psw);
Pnw := (0, 0);
Pne := (w, 0);
Pse := (w, -h);
Psw := (0, -h);
B := (1/4w, -1/6h);
D := B shifted (1/2w, 0);
E := D shifted (0, -d);
byPointXYZDefine.A(xpart(B), ypart(B), d);
byPointXYZDefine.C(xpart(D), ypart(D), d);
byPointLabelRemove(Pnw, Pne, Pse, Psw);
bySetProjection(-75, 0, 60);
draw byPolygon(Pnw, Pne, Pse, Psw)(white);
draw byAngle(A, B, D, byblue, 0);
draw byAngle(B, D, E, byyellow, 0);
draw byAngle(C, D, B, byblack, 0);
draw byAngle(C, D, E, byblack, 1);
byLineDefine(A, B, byblack, 0, 0);
byLineDefine(C, D, byblack, 1, 0);
byLineDefine(B, D, byblue, 0, 0);
byLineDefine(D, E, byblue, 1, 0);
byLineDefine(B, E, byred, 0, 0);
byLineDefine(A, D, byred, 1, 0);
byLineDefine(A, E, byyellow, 0, 0);
draw byNamedLineSeq(0)(CD, BD);
draw byAngle(E, D, A, byred, 0);
draw byNamedLineSeq(0)(AD, DE);
draw byNamedLineSeq(0)(AB, BE, AE);
draw byAngle(A, B, E, byred, 1);
draw byLabelsOnPolygon(C, E, B, A)(0, 0);
draw byLabelsOnPolygon(E, D, B)(2, 0);
}
\drawCurrentPictureInMargin
\problem{I}{f}{two straight lines be at right angles to the same plane, the straight lines are parallel.}
For let the two straight lines \drawUnitLine{AB} and \drawUnitLine{CD} be at right angles to the plane of reference \drawPolygon[middle][planeOfReference]{PnwPnePsePsw}.
I say that $\drawUnitLine{AB} \parallel \drawUnitLine{CD}$.
Let them meet the plane of reference \planeOfReference\ at the points \drawPointL{B} and \drawPointL{D}.
Join the straight line \drawUnitLine{BD}. Draw \drawUnitLine{DE} in \planeOfReference $\perp \drawUnitLine{BD}$, and make $\drawUnitLine{DE} = \drawUnitLine{AB}$. \byref{prop:I.XI,prop:I.III}
Now, since \drawUnitLine{AB} is at right angles to \planeOfReference, it also makes right angles with all the straight lines which meet it and lie in the plane of reference. \byref{def:XI.III}
But each of the straight lines \drawUnitLine{BD} and \drawUnitLine{BE} lies in \planeOfReference\ and meets \drawUnitLine{AB}, therefore each of the angles \drawAngle{ABD} and \drawAngle{ABE} is right. For the same reason each of the angles \drawAngle{CDB} and \drawAngle{CDE} is also right.
And since in \drawLine{AD,DB,BA} and \drawLine{DE,EB,BD} $\drawUnitLine{AB} = \drawUnitLine{DE}$, and \drawUnitLine{BD} is common, therefore the two sides \drawUnitLine{AB} and \drawUnitLine{BD} equal the two sides \drawUnitLine{ED} and \drawUnitLine{DB}. And they include right angles \drawAngle{ABD} and \drawAngle{BDE}, therefore the base $\drawUnitLine{AD} = \drawUnitLine{BE}$. \byref{prop:I.IV}
And, since in \drawLine{AE,EB,BA} and \drawLine{DA,AE,ED} $\drawUnitLine{AB} = \drawUnitLine{DE}$ while $\drawUnitLine{AD} = \drawUnitLine{BE}$, the two sides \drawUnitLine{AB} and \drawUnitLine{BE} equal the two sides \drawUnitLine{ED} and \drawUnitLine{DA}, and \drawUnitLine{AE} is their common base, therefore the angle \drawAngle{ABE} equals the angle \drawAngle{EDA}. \byref{prop:I.VIII}
But the angle \drawAngle{ABE} is right, therefore the angle \drawAngle{EDA} is also right. Therefore \drawUnitLine{ED} is at right angles to \drawUnitLine{DA}.
But it is also at right angles to each of the straight lines \drawUnitLine{BD} and \drawUnitLine{DC}, therefore \drawUnitLine{ED} is set up at right angles to the three straight lines \drawUnitLine{BD}, \drawUnitLine{DA}, and \drawUnitLine{DC} at their intersection. Therefore the three straight lines \drawUnitLine{BD}, \drawUnitLine{DA}, and \drawUnitLine{DC} lie in one plane. \byref{prop:XI.V}
But in whatever plane \drawUnitLine{DB} and \drawUnitLine{DA} lie, \drawUnitLine{AB} also lies, for every triangle lies in one plane. \byref{prop:XI.II}
Therefore the straight lines \drawUnitLine{AB}, \drawUnitLine{BD}, and \drawUnitLine{DC} are in one plane. And each of the angles \drawAngle{ABD} and \drawAngle{BDC} is right, therefore \drawUnitLine{AB} is parallel to \drawUnitLine{CD}. \byref{prop:I.XXVIII}
\qed
\starttheorem{Prop. VII. Theor.}\label{prop:XI.VII}
\defineNewPicture[1/4]{
numeric w, h, d;
w := 4cm;
h := 3cm;
d := 2cm;
byPair(A, B, C, D, E, F, H, Pnw, Pne, Pse, Psw);
Pnw := (0, 0);
Pne := (w, 0);
Pse := (w, -h);
Psw := (0, -h);
A := (1/4w, -1/4h);
B := A shifted (1/2w, 0);
C := A shifted (0, -1/2h);
D := B shifted (0, -1/2h);
E := 1/3[A, B];
F := 3/4[C, D];
H := 1/2[E, F];
byPointXYZDefine.G(xpart(H), ypart(H), 1/4d);
byPointXYZDefine.E'(xpart(E), ypart(E), d);
byPointXYZDefine.F'(xpart(F), ypart(F), d);
byPointXYZDefine.E''(xpart(E), ypart(E), -d);
byPointXYZDefine.F''(xpart(F), ypart(F), -d);
byPointLabelRemove(Pnw, Pne, Pse, Psw, E', F', E'', F'');
bySetProjection(-45, 0, 75);
draw byPolygon(E, F, F'', E'')(byyellow);
draw byPolygon(Pnw, Pne, Pse, Psw)(white);
byLineDefine(A, E, byblue, 0, 0);
byLineDefine(E, B, byblue, 0, 0);
byLineDefine(C, F, byblue, 1, 0);
byLineDefine(F, D, byblue, 1, 0);
byLineDefine(E, F, byred, 1, 0);
draw byNamedLine(EB, FD);
draw byPolygon(E, F, F', E')(byyellow);
draw byArbitraryCurve.EGF(E, G, F)(byred, 0, 0);
draw byNamedLineSeq(0)(AE, EF, CF);
draw byLabelsOnPolygon(E, G, F)(2, 0);
draw byLabelsOnPolygon(A, E, B, D, F, C)(0, 0);
}
\drawCurrentPictureInMargin
\problem{I}{f}{two straight lines are parallel and points be taken at random on each of them, the straight line joining the points is in the same plane with the parallel straight lines.}
Let \drawUnitLine{AB} and \drawUnitLine{CD} be two parallel straight lines, and let points \drawPointL{E} and \drawPointL{F} be taken at random on them respectively.
I say that the straight line joining the points \drawPointL{E} and \drawPointL{F} lies in the same plane \drawPolygon[middle][planeOfReference]{PnwPnePsePsw} with the parallel straight lines.
For suppose it is not, but, if possible, let it be in a more elevated plane. Draw a plane \drawPolygon[middle][planeEGF]{EFF'E',EFF''E''} through \drawFromCurrentPicture[middle][lineEGF]{
startAutoLabeling;
draw byNamedArbitraryCurve(EGF);
stopAutoLabeling;
}. Its intersection with the plane of reference is a straight line. Let it be \drawUnitLine{EF}. \byref{prop:XI.III}
$\therefore$ the two straight lines \lineEGF\ and \drawUnitLine{EF} enclose an area, which is impossible. $\therefore$ the straight line joined from \drawPointL{E} to \drawPointL{F} is not in a plane more elevated. $\therefore$ the straight line joined from \drawPointL{E} to \drawPointL{F} lies in the plane through the parallel straight lines \drawUnitLine{AB} and \drawUnitLine{CD}.
$\therefore$, if two straight lines are parallel and points are taken at random on each of them, then the straight line joining the points is in the same plane with the parallel straight lines.
\qed
\starttheorem{Prop. VIII. Theor.}\label{prop:XI.VIII}
\defineNewPicture{
numeric w, h, d;
w := 4cm;
h := 3cm;
d := 2cm;
byPair(B, D, E, Pnw, Pne, Pse, Psw);
Pnw := (0, 0);
Pne := (w, 0);
Pse := (w, -h);
Psw := (0, -h);
B := (1/4w, -1/6h);
D := B shifted (1/2w, 0);
E := D shifted (0, -d);
byPointXYZDefine.A(xpart(B), ypart(B), d);
byPointXYZDefine.C(xpart(D), ypart(D), d);
byPointXYZDefine.A'(xpart(B), ypart(B), 6/5d);
byPointXYZDefine.C'(xpart(D), ypart(D), 6/5d);
byPointLabelRemove(Pnw, Pne, Pse, Psw, A', C');
bySetProjection(-75, 0, 60);
draw byPolygon(Pnw, Pne, Pse, Psw)(white);
draw byPolygon(B, D, C', A')(byyellow);
draw byAngle(A, B, D, byblue, 0);
draw byAngle(B, D, E, byyellow, 0);
draw byAngle(C, D, B, byblack, 0);
draw byAngle(C, D, E, byblack, 1);
byLineDefine(A, B, byblack, 0, 0);
byLineDefine(C, D, byblack, 1, 0);
byLineDefine(B, D, byblue, 0, 0);
byLineDefine(D, E, byblue, 1, 0);
byLineDefine(B, E, byred, 0, 0);
byLineDefine(A, D, byred, 1, 0);
byLineDefine(A, E, byyellow, 1, 0);
draw byNamedLineSeq(0)(CD, BD);
draw byAngle(E, D, A, byred, 0);
draw byNamedLineSeq(0)(AD, DE);
draw byNamedLineSeq(0)(AB, BE, AE);
draw byAngle(A, B, E, byred, 1);
draw byLabelsOnPolygon(C, E, B, A)(0, 0);
draw byLabelsOnPolygon(E, D, B)(2, 0);
}
\drawCurrentPictureInMargin
\problem{I}{f}{two straight lines be parallel, and one of them be at right angles to any plane, then the remaining one will also be at right angles to the same plane.}
Let \drawUnitLine{AB} and \drawUnitLine{CD} be two parallel straight lines, and let one of them, \drawUnitLine{AB}, be at right angles to the plane of reference \drawPolygon[middle][planeOfReference]{PnwPnePsePsw}.
I say that the remaining one, \drawUnitLine{CD}, is also at right angles to the same plane.
Let \drawUnitLine{AB} and \drawUnitLine{CD} meet the plane of reference at the points \drawPointL{B} and \drawPointL{D}. Join \drawUnitLine{BD}. Then \drawUnitLine{AB}, \drawUnitLine{CD}, and \drawUnitLine{BD} lie in one plane. \byref{prop:XI.VII}
Draw \drawUnitLine{DE} in \planeOfReference\ $\perp \drawUnitLine{BD}$, make $\drawUnitLine{DE} = \drawUnitLine{AB}$, and join \drawUnitLine{BE}, \drawUnitLine{AE}, and \drawUnitLine{AD}. \byref{prop:I.XI,I.III}
Now, since $\drawUnitLine{AB} \perp \planeOfReference$, therefore \drawUnitLine{AB} is also at right angles to all the straight lines which meet it and lie in \planeOfReference. Therefore each of the angles \drawAngle{ABD} and \drawAngle{ABE} is right. \byref{def:XI.III}
And, since the straight line \drawUnitLine{BD} falls on the parallels \drawUnitLine{AB} and \drawUnitLine{CD}, $\therefore \drawAngle{ABD} + \drawAngle{CDB} \drawTwoRightAngles$.
But the angle \drawAngle{ABD} is right, therefore the angle \drawAngle{CDB} is also right. $\therefore \drawUnitLine{CD} \perp \drawUnitLine{BD}$. \byref{prop:I.XXIX}
And since in \drawLine{AD,DB,BA} and \drawLine{DE,EB,BD} $\drawUnitLine{AB} = \drawUnitLine{DE}$, and \drawUnitLine{BD} is common, the two sides \drawUnitLine{AB} and \drawUnitLine{BD} equal the two sides \drawUnitLine{ED} and \drawUnitLine{DB}, and $\drawAngle{ABD} = \drawAngle{EDB}$, for each is right, therefore the base $\drawUnitLine{AD} = \drawUnitLine{BE}$. \byref{prop:I.IV}
And since in \drawLine{DE,EB,BD} and \drawLine{ED,DA,AE}$\drawUnitLine{AB} = \drawUnitLine{DE}$, and $\drawUnitLine{BE} = \drawUnitLine{AD}$, the two sides \drawUnitLine{AB} and \drawUnitLine{BE} equal the two sides \drawUnitLine{ED} and \drawUnitLine{DA} respectively, and \drawUnitLine{AE} is their common base, $\therefore \drawAngle{ABE} = \drawAngle{EDA}$. \byref{prop:I.VIII}
But the angle \drawAngle{ABE} is right, therefore the angle \drawAngle{EDA} is also right. $\therefore \drawUnitLine{ED} \perp \drawUnitLine{AD}$. But it is also $\perp \drawUnitLine{DB}$. $\therefore$ \drawUnitLine{ED} is also at right angles to the plane through \drawUnitLine{BD} and \drawUnitLine{DA}. \byref{prop:XI.IV}
$\therefore$ \drawUnitLine{ED} also makes right angles with all the straight lines which meet it and lie in the plane through \drawUnitLine{BD} and \drawUnitLine{DA}. But \drawUnitLine{DC} lies in the plane \drawPolygon{BDC'A'} through \drawUnitLine{BD} and \drawUnitLine{DA} inasmuch as \drawUnitLine{AB} and \drawUnitLine{BD} lie in the plane \drawPolygon{BDC'A'} through \drawUnitLine{BD} and \drawUnitLine{DA}, and \drawUnitLine{DC} also lies in the plane \drawPolygon{BDC'A'} in which \drawUnitLine{AB} and \drawUnitLine{BD} lie.
$\therefore \drawUnitLine{ED} \perp \drawUnitLine{DC}$, so that $\drawUnitLine{CD} \perp \drawUnitLine{DE}$. But $\drawUnitLine{CD} \perp \drawUnitLine{BD}$. $\therefore$ \drawUnitLine{CD} is set up at right angles to the two straight lines \drawUnitLine{DE} and \drawUnitLine{DB} so that \drawUnitLine{CD} is also at right angles to the plane through \drawUnitLine{DE} and \drawUnitLine{DB}. \byref{prop:XI.IV}
But the plane through \drawUnitLine{DE} and \drawUnitLine{DB} is the plane of reference \planeOfReference, $\therefore \drawUnitLine{CD} \perp \planeOfReference$.
Therefore, if two straight lines are parallel, and one of them is at right angles to any plane, then the remaining one is also at right angles to the same
\qed
\starttheorem{Prop. IX. Theor.}\label{prop:XI.IX}
\defineNewPicture{
numeric w, h, d;
w := 4cm;
h := 4cm;
d := 9/5cm;
byPair(Pnw, Pne, Pse, Psw);
Pnw := (0, 0);
Pne := (w, 0);
Pse := (w, -h);
Psw := (0, -h);
byPointXYZDefine.A(1/4w, -1/4h, 0);
byPointXYZDefine.B(3/4w, -1/4h, 0);
byPointXYZDefine.C(1/4w, -3/4h, 0);
byPointXYZDefine.D(3/4w, -3/4h, 0);
byPointXYZDefine.E(1/4w, -1/2h, d);
byPointXYZDefine.F(3/4w, -1/2h, d);
byPointXYZEmpty(G, H, K, Eab', Fab', Ecd', Fcd', A', B', C', D', H', K');
pointXYZ.G := 1/2[pointXYZ.E, pointXYZ.F];
pointXYZ.H := 1/2[pointXYZ.A, pointXYZ.B];
pointXYZ.K := 1/2[pointXYZ.C, pointXYZ.D];
pointXYZ.Eab' := 4/3[pointXYZ.A, pointXYZ.E];
pointXYZ.Fab' := 4/3[pointXYZ.B, pointXYZ.F];
pointXYZ.A' := 5/4[pointXYZ.E, pointXYZ.A];
pointXYZ.B' := 5/4[pointXYZ.F, pointXYZ.B];
pointXYZ.Ecd' := 4/3[pointXYZ.C, pointXYZ.E];
pointXYZ.Fcd' := 4/3[pointXYZ.D, pointXYZ.F];
pointXYZ.C' := 5/4[pointXYZ.E, pointXYZ.C];
pointXYZ.D' := 5/4[pointXYZ.F, pointXYZ.D];
pointXYZ.H' := (redpart(pointXYZ.H), greenpart(pointXYZ.H), bluepart(pointXYZ.G));
pointXYZ.K' := (redpart(pointXYZ.K), greenpart(pointXYZ.K), bluepart(pointXYZ.G));
byPointLabelRemove(Pnw, Pne, Pse, Psw, Eab', Fab', Ecd', Fcd', A', B', C', D', H', K');
bySetProjection(-75, 0, 70);
draw byPolygon.planeHK''(H, H', G)(byblue);
draw byPolygon.planeGK''(E, Ecd', Fcd', F)(byred);
draw byPolygon.planeGH'(A', A, B, B')(byyellow);
draw byPolygon.planeGK'(C', C, D, D')(byred);
draw byPolygon.refPlane(Pnw, Pne, Pse, Psw)(white);
draw byPolygon.planeGH(Eab', Fab', B, A)(byyellow);
byLineDefine(A, H, byred, 0, 0);
byLineDefine(H, B, byred, 0, 0);
byLineDefine(C, K, byyellow, 0, 0);
byLineDefine(K, D, byyellow, 0, 0);
byLineDefine(E, G, byblue, 0, 0);
byLineDefine(G, F, byblue, 0, 0);
byLineDefine(H, G, byblack, 0, 0);
byLineDefine(G, K, byblack, 1, 0);
draw byNamedLine(AH, HB);
draw byPolygon.planeHK'(H, G, K)(byblue);
draw byNamedLine(HG);
draw byPolygon.planeGK(E, F, D, C)(byred);
draw byNamedLine(CK, KD, EG, GF);
draw byPolygon.planeHK(K, K', G)(byblue);
draw byNamedLine(GK);
draw byLabelsOnPolygon(Fab', F, D, D')(2, 0);
draw byLabelsOnPolygon(C', C, E)(2, 0);
draw byLabelsOnPolygon(A', A, E, Ecd')(2, 0);
draw byLabelsOnPolygon(F, B, B')(2, 0);
draw byLabelsOnPolygon(H', G, F)(2, 0);
draw byLabelsOnPolygon(K, H, A)(2, 0);
draw byLabelsOnPolygon(D, K, C)(2, 0);
}
\drawCurrentPictureInMargin
\problem{S}{traight}{lines which are parallel to the same straight line and are not in the same plane with it are also parallel to one another.}
For let each of the straight lines \drawUnitLine{AB}, \drawUnitLine{CD} be parallel to \drawUnitLine{EF}, not being in the same plane \drawPolygon{refPlane} with it. I say that $\drawUnitLine{AB} \parallel \drawUnitLine{CD}$.
For let a point \drawPointL{G} be taken at random on \drawUnitLine{EF}, and from it let there be drawn \drawUnitLine{GH}, in the plane \drawPolygon{planeGH,planeGH'} through \drawUnitLine{EF}, \drawUnitLine{AB}, at right angles to \drawUnitLine{EF}, and \drawUnitLine{GK} in the plane \drawPolygon{planeGK,planeGK',planeGK''} through \drawUnitLine{FE}, \drawUnitLine{CD} again at right angles to \drawUnitLine{EF}.
Now, since \drawUnitLine{EF} is at right angles to each of the straight lines \drawUnitLine{GH}, \drawUnitLine{GK}, $\therefore \drawUnitLine{EF} \perp$ to the plane \drawPolygon[middle][planeHK]{planeHK,planeHK',planeHK''} through \drawUnitLine{GH}, \drawUnitLine{GK}. \byref{prop:XI.IV}
And $\drawUnitLine{EF} \parallel \drawUnitLine{AB}$, $\therefore \drawUnitLine{AB} \perp \planeHK$. \byref{prop:XI.VIII}
For the same reason $\drawUnitLine{CD} \perp \planeHK$. $\therefore$ each of the straight lines \drawUnitLine{AB}, \drawUnitLine{CD} $\perp \planeHK$.
But, if two straight lines be at right angles to the same plane, the straight lines are parallel \byref{prop:XI.VI}.
Therefore $\drawUnitLine{AB} \parallel \drawUnitLine{CD}$.
\qed
\starttheorem{Prop. X. Theor.}\label{prop:XI.X}
\defineNewPicture{
numeric w, d;
color s;
w := 7/2cm;
d := 2cm;
s := (0, 0, d);
byPointXYZDefine.Pnw(0, 0, 0);
byPointXYZDefine.Pne(w, 0, 0);
byPointXYZDefine.Pse(w, -w, 0);
byPointXYZDefine.Psw(0, -w, 0);
byPointXYZDefine.A(1/5w, -4/5w, 0);
byPointXYZDefine.B(1/5w, -1/5w, 0);
byPointXYZDefine.C(4/5w, -1/5w, 0);
byPointXYZEmpty(D, E, F, Pnw', Pne', Pse', Psw');
pointXYZ.D := pointXYZ.A + s;
pointXYZ.E := pointXYZ.B + s;
pointXYZ.F := pointXYZ.C + s;
pointXYZ.Pnw' := pointXYZ.Pnw + s;
pointXYZ.Pne' := pointXYZ.Pne + s;
pointXYZ.Pse' := pointXYZ.Pse + s;
pointXYZ.Psw' := pointXYZ.Psw + s;
byPointLabelRemove(Pnw, Pne, Pse, Psw, Pnw', Pne', Pse', Psw');
bySetProjection(-65, 0, 22);
byLineDefine(A, B, byred, 0, 0);
byLineDefine(B, C, byblue, 0, 0);
byLineDefine(C, A, byyellow, 0, 0);
byLineDefine(D, E, byred, 1, 0);
byLineDefine(E, F, byblue, 1, 0);
byLineDefine(F, D, byyellow, 1, 0);
byLineDefine(A, D, byblack, 1, 0);
byLineDefine(C, F, byblack, 0, 2);
byLineDefine(B, E, byblack, 0, 0);
draw byPolygon.planeOne(Pnw, Pne, Pse, Psw)(white);
draw byAngle(A, B, C, byred, 0);
draw byNamedLineSeq(0)(AB, BC, CA);
draw byNamedLine(AD, CF, BE);
draw byPolygon.planeTwo(Pnw', Pne', Pse', Psw')(white);
draw byAngle(D, E, F, byred, 1);
draw byNamedLineSeq(0)(DE, EF, FD);
draw byLabelsOnPolygon(A, B, E, F, C)(0, 0);
draw byLabelsOnPolygon(E, D, F)(2, 0);
}
\drawCurrentPictureInMargin
\problem{I}{f}{two straight lines meeting one another be parallel to two straight lines meeting one another not in the same plane, they will contain equal angles.}
For let the two straight lines \drawUnitLine{AB}, \drawUnitLine{BC} meeting one another be parallel to the two straight lines \drawUnitLine{DE}, \drawUnitLine{EF} meeting one another, not in the same plane. I say that the angle \drawAngle{B} is equal to the angle \drawAngle{E}.
For let \drawUnitLine{BA}, \drawUnitLine{BC}, \drawUnitLine{ED}, \drawUnitLine{EF} be cut off equal to one another, and let \drawUnitLine{AD}, \drawUnitLine{CF}, \drawUnitLine{BE}, \drawUnitLine{AC}, \drawUnitLine{DF} be joined.
Now, since \drawUnitLine{BA} is equal and parallel to \drawUnitLine{ED}, therefore \drawUnitLine{AD} is also equal and parallel to \drawUnitLine{BE}. \byref{prop:I.XXXIII}
For the same reason \drawUnitLine{CF} is also equal and parallel to \drawUnitLine{BE}.
Therefore each of the straight lines \drawUnitLine{AD}, \drawUnitLine{CF} is equal and parallel to \drawUnitLine{BE}.
But straight lines which are parallel to the same straight line and are not in the same plane with it are parallel to one another. \byref{prop:XI.IX}
Therefore \drawUnitLine{AD} is parallel and equal to \drawUnitLine{CF}.
And \drawUnitLine{AC}, \drawUnitLine{DF} join them. Therefore \drawUnitLine{AC} is also equal and parallel to \drawUnitLine{DF}. \byref{prop:I.XXXIII}
Now, since in \drawLine{AB,BC,CA} and \drawLine{DE,EF,FD} $\drawUnitLine{AB} = \drawUnitLine{DE}$, $\drawUnitLine{BC}=\drawUnitLine{EF}$ and $\drawUnitLine{AC}=\drawUnitLine{DF}$, $\therefore \drawAngle{B} = \drawAngle{E}$. \byref{prop:I.VIII}
\qed
\startproblem{Prop. XI. Prob.}\label{prop:XI.XI}
\defineNewPicture{
numeric w, h, d;
byPair(B, C, D, E, F, G, H, Pnw, Pne, Pse, Psw);
w := 3cm;
h := 3cm;
d := 7/4cm;
Pnw := (0, 0);
Pne := (w, 0);
Pse := (w, -h);
Psw := (0, -h);
byPointXYZDefine.A(1/3w, -1/2h, d);
B := (5/6w, -4/5h);
C := (5/6w, -1/5h);
F := (redpart(pointXYZ.A), greenpart(pointXYZ.A));
D = whatever[B, C] = whatever[F, F + ((B-C) rotated 90)];
E := 4/3[D, F];
G := F shifted (B-D);
H := F shifted (C-D);
byPointXYZDefine.E'(xpart(E), ypart(E), 6/5d);
byPointXYZDefine.D'(xpart(D), ypart(D), 6/5d);
byPointLabelRemove(Pnw, Pne, Pse, Psw, E', D');
byLineDefine(A, F, byblack, 0, 0);
byLineDefine(A, D, byred, 0, 0);
byLineDefine(B, D, byyellow, 0, 0);
byLineDefine(D, C, byyellow, 0, 0);
byLineDefine(D, F, byblue, 0, 0);
byLineDefine(F, E, byblue, 1, 0);
byLineDefine(G, F, byblack, 1, 0);
byLineDefine(F, H, byblack, 1, 0);
bySetProjection(-60, 0, -50);
draw byPolygon.refPlane(Pnw, Pne, Pse, Psw)(white);
draw byNamedLine(FH, DC);
draw byPolygon.planeEAD(E, E', D', D)(byyellow);
draw byNamedLine(DF, FE);
draw byNamedLineSeq(0)(GF, AF, AD, BD);
draw byLabelsOnPolygon(A, H, C, D, B, G, E)(0, 0);
draw byLabelsOnPolygon(D, F, G)(2, 0);
}
\drawCurrentPictureInMargin
\problem{F}{rom}{a given elevated point to draw a straight line perpendicular to a given plane.}
Let \drawPointL{A} be the given elevated point, and the plane of reference the given plane \drawPolygon{refPlane}. Thus it is required to draw from \drawPointL{A} a straight line perpendicular to \drawPolygon{refPlane}.
Let any straight line \drawUnitLine{BC} be drawn, at random, in the plane of reference,
and let \drawUnitLine{AD} be drawn from the point \drawPointL{A} perpendicular to \drawUnitLine{BC}. \byref{prop:I.XII}
If then $\drawUnitLine{AD} \perp \drawPolygon{refPlane}$, that which was enjoined will have been done.
But, if not, let \drawUnitLine{DE} be drawn from the point \drawPointL{D} at right angles to \drawUnitLine{BC} and in \drawPolygon{refPlane} \byref{prop:I.XI}, let \drawUnitLine{AF} be drawn from \drawPointL{A} perpendicular to \drawUnitLine{DE} \byref{prop:I.XII}, and let \drawUnitLine{GH} be drawn through the point \drawPointL{F} parallel to \drawUnitLine{BC}. \byref{prop:I.XXXI}
Now, since \drawUnitLine{BC} is at right angles to each of the straight lines \drawUnitLine{DA}, \drawUnitLine{DE}, therefore \drawUnitLine{BC} is also at right angles to the plane \drawPolygon{planeEAD} through \drawUnitLine{ED}, \drawUnitLine{DA}. \byref{prop:XI.IV}
And \drawUnitLine{GH} is parallel to it; but, if two straight lines be parallel, and one of them be at right angles to any plane, the remaining one will also be at right angles to the same plane. \byref{prop:XI.VIII}
$\therefore \drawUnitLine{GH} \perp \drawPolygon{planeEAD}$
Therefore \drawUnitLine{GH} is also at right angles to all the straight lines which meet it and are in \drawPolygon{planeEAD}. \byref{def:XI.III}
But \drawUnitLine{AF} meets it and is in the plane through \drawUnitLine{ED}, $\therefore \drawUnitLine{GH} \perp \drawUnitLine{AF}$, so that $\drawUnitLine{AF} \perp \drawUnitLine{GH}$.
But $\drawUnitLine{AF} \perp \drawUnitLine{DE}$, $\therefore \drawUnitLine{AF} \perp \drawUnitLine{GH} \mbox{ and } \drawUnitLine{DE}$.
But, if a straight line be set up at right angles to two straight lines which cut one another, at the point of section, it will also be at right angles to the plane through them. \byref{prop:XI.IV}
$\therefore \drawUnitLine{AF} \perp \drawPolygon{refPlane}$.
Therefore from the given elevated point \drawPointL{A} the straight line \drawUnitLine{AF} has been drawn perpendicular to the plane of reference \drawPolygon{refPlane}.
\qef
\startproblem{Prop. XII. Prob.}\label{prop:XI.XII}
\defineNewPicture{
numeric w, h, d;
byPair(A, C, Pnw, Pne, Pse, Psw);
w := 5/2cm;
h := 5/2cm;
d := 2cm;
Pnw := (0, 0);
Pne := (w, 0);
Pse := (w, -h);
Psw := (0, -h);
A := (1/3w, -2/3h);
C := (2/3w, -1/3h);
byPointXYZDefine.B(xpart(C), ypart(C), d);
byPointXYZDefine.D(xpart(A), ypart(A), 3/4d);
byPointLabelRemove(Pnw, Pne, Pse, Psw);
byLineDefine(A, D, byblue, 0, 0);
byLineDefine(C, B, byred, 0, 0);
bySetProjection(-60, 0, -30);
draw byPolygon.refPlane(Pnw, Pne, Pse, Psw)(white);
draw byNamedLine(AD, CB);
draw byLabelsOnPolygon(A, D, B, C)(0, 0);
}
\drawCurrentPictureInMargin
\problem{T}{o}{set up a straight line at right angles to a given plane from a given point in it.}
Let the plane of reference be the given plane \drawPolygon{refPlane}, and \drawPointL{A} the point in it. Thus it is required to set up from \drawPointL{A} a straight line at right angles to the \drawPolygon{refPlane}.
Let any elevated point \drawPointL{B} be conceived, from \drawPointL{B} let \drawUnitLine{BC} be drawn perpendicular to \drawPolygon{refPlane} \byref{prop:XI.XI}, and through the point \drawPointL{A} let \drawUnitLine{AD} be drawn parallel to \drawUnitLine{BC}. \byref{prop:I.XXXI}
Then, since $\drawUnitLine{AD} \parallel \drawUnitLine{CB}$, while one of them, $\drawUnitLine{BC} \perp \drawPolygon{refPlane}$, $\therefore \drawUnitLine{AD} \perp \drawPolygon{refPlane}$. \byref{prop:XI.VIII}
Therefore \drawUnitLine{AD} has been set up at right angles to the given plane \drawPolygon{refPlane} from the point \drawPointL{A} in it.
\qef
\starttheorem{Prop. XIII. Theor.}\label{prop:XI.XIII}
\defineNewPicture{
numeric w, h, d;
byPair(A, D, E, C', Pnw, Pne, Pse, Psw);
w := 5/2cm;
h := 5/2cm;
d := 2cm;
Pnw := (0, 0);
Pne := (w, 0);
Pse := (w, -h);
Psw := (0, -h);
A := (1/2w, -1/2h);
D := 1/3[Pnw, Psw];
E = whatever[A, D] = whatever[Pne, Pse];
C' := 1/2[A, E];
byPointXYZDefine.B(xpart(A), ypart(A), 5/6d);
byPointXYZDefine.C(xpart(C'), ypart(C'), 5/6d);
byPointXYZDefine.D'(xpart(D), ypart(D), d);
byPointXYZDefine.E'(xpart(E), ypart(E), d);
byPointLabelRemove(Pnw, Pne, Pse, Psw, C', D', E');
byLineDefine(A, B, byred, 0, 0);
byLineDefine(A, C, byred, 1, 0);
byLineDefine(D, A, byblue, 0, 0);
byLineDefine(A, E, byblue, 0, 0);
bySetProjection(-75, 0, -30);
draw byPolygon.refPlane(Pnw, Pne, Pse, Psw)(white);
draw byPolygon.planeABC(D, D', E', E)(byyellow);
draw byAngle(B, A, C, byblue, 0);
draw byAngle(C, A, E, byred, 0);
draw byNamedLine(AB, AC, DA, AE);
draw byLabelsOnPolygon(A, B, C, E)(0, 0);
draw byLabelsOnPolygon(Psw, D, D')(2, 0);
}
\drawCurrentPictureInMargin
\problem{F}{rom}{the same point two straight lines cannot be set up at right angles to the same plane on the same side.}
For, if possible, from the same point \drawPointL{A} let the two straight lines \drawUnitLine{AB}, \drawUnitLine{AC} be set up at right angles to the plane of reference \drawPolygon{refPlane} and on the same side, and let a plane \drawPolygon{planeABC} be drawn through \drawUnitLine{BA}, \drawUnitLine{AC}. It will then make, as section through \drawPointL{A} in \drawPolygon{refPlane}, a straight line. \byref{prop:XI.III}
Let it make \drawUnitLine{DA,AE}; therefore the straight lines \drawUnitLine{AB},
\drawUnitLine{AC}, \drawUnitLine{DA,AE} are in one plane \drawPolygon{planeABC}.
And, since $\drawUnitLine{CA} \perp \drawPolygon{refPlane}$, it will also make right angles with all the straight lines which meet it and are in the plane of reference. \byref{def:XI.III}
But \drawUnitLine{DA,AE} meets it and is in \drawPolygon{refPlane}; therefore the angle \drawAngle{CAE} is right.
For the same reason the angle \drawAngle{EAB} is also right; $\therefore \drawAngle{CAE} = \drawAngle{EAB}$. And they are in one plane: which is impossible.
\qed
\starttheorem{Prop. XIV. Theor.}\label{prop:XI.XIV}
\defineNewPicture{
numeric w, w', h, d;
color s[];
w := 3/2cm;
w' := 3cm;
h := 2cm;
d := 2cm;
s1 := (0, 0, d);
s2 := ((w'-w)/2, 0, -1/8h);
s3 := (redpart(s2), 0, -bluepart(s2));
byPointXYZDefine.E'(0, 0, 0);
byPointXYZDefine.E(0, -h, 0);
byPointXYZDefine.F(w, 0, 0);
byPointXYZDefine.F'(w, -h, 0);
byPointXYZDefine.B(1/3w, -1/2h, 0);
byPointXYZDefine.G(w', 0, 1/2d);
byPointXYZDefine.H(w', -h, 1/2d);
byPointXYZEmpty(D, D', C, C', C'h, Cg, F'h, Fg ,A, K);
pointXYZ.D' := pointXYZ.E' + s1;
pointXYZ.D := pointXYZ.E + s1;
pointXYZ.C := pointXYZ.F + s1;
pointXYZ.C' := pointXYZ.F' + s1;
pointXYZ.A := pointXYZ.B + s1;
pointXYZ.K := 1/2[pointXYZ.G, pointXYZ.H];
pointXYZ.Cg := pointXYZ.C + s2;
pointXYZ.C'h := pointXYZ.C' + s2;
pointXYZ.Fg := pointXYZ.F + s3;
pointXYZ.F'h := pointXYZ.F' + s3;
byPointLabelRemove(C', D', E',F');
bySetProjection(-75, 0, -12);
byLineDefine(A, B, byblack, 0, 0);
byLineDefine(G, H, byyellow, 0, 0);
byLineDefine(A, K, byred, 0, 0);
byLineDefine(B, K, byblue, 0, 0);
draw byPolygon.planeB(E, E', F, F')(byblue);
draw byArbitraryCurve.CG(C, Cg, G)(byred, 1, 2);
draw byArbitraryCurve.FG(F, Fg, G)(byblue, 1, 2);
draw byAngle(A, B, K, byred, 0);
draw byAngle(K, A, B, byblue, 0);
draw byNamedLineSeq(0)(BK, AB, AK, noLine);
draw byNamedLine(GH);
draw byPolygon.planeA(D, D', C, C')(byred);
draw byArbitraryCurve.CH(C', C'h, H)(byred, 1, 2);
draw byArbitraryCurve.FH(F', F'h, H)(byblue, 1, 2);
draw byLabelsOnPolygon(E, D, D', C, F')(0, 0);
draw byLabelsOnPolygon(Fg, F, F')(2, 0);
draw byLabelsOnPolygon(B, A, G, K, H)(0, 0);
}
\drawCurrentPictureInMargin
\problem{P}{lanes}{to which the same straight line is at right angles will be parallel.}
For let any straight line \drawUnitLine{AB} be at right angles to each of the planes \drawPolygon{planeA}, \drawPolygon{planeB}. I say that the planes are parallel.
For, if not, they will meet when produced.
Let them meet; they will then make, as common section, a straight line. \byref{prop:XI.III}
Let them make \drawUnitLine{GH}. Let a point \drawPointL{K} be taken at random on \drawUnitLine{GH}, and let \drawUnitLine{AK}, \drawUnitLine{BK} be joined.
Now, since $\drawUnitLine{AB} \perp \drawPolygon{planeB}$, $\therefore \drawUnitLine{AB} \perp \drawUnitLine{BK}$, which is a straight line in \drawPolygon{planeB} produced. \byref{def:XI.III}
$\therefore \drawAngle{B}$ is right.
For the same reason \drawAngle{A} is also right.
Thus, in the triangle \drawLine{AK,KB,BA} $\drawAngle{A} + \drawAngle{B} = \drawTwoRightAngles$, which is impossible. \byref{prop:I.XVII}
Therefore the planes \drawPolygon{planeA}, \drawPolygon{planeB} will not meet when produced. $\therefore \drawPolygon{planeA} \parallel \drawPolygon{planeB}$ \byref{def:XI.VIII}
\qed
\starttheorem{Prop. XV. Theor.}\label{prop:XI.XV}
\defineNewPicture{
numeric w, d;
color s[];
w := 7/2cm;
d := 2cm;
s0 := (0, 0, -d);
s1 := (1/4w, 1/3w, -d);
byPointXYZDefine.Pnw(0, 0, 0);
byPointXYZDefine.Pne(w, 0, 0);
byPointXYZDefine.Pse(w, -w, 0);
byPointXYZDefine.Psw(0, -w, 0);
byPointXYZDefine.A(1/6w, -4/5w, 0);
byPointXYZDefine.B(1/4w, -1/2w, 0);
byPointXYZDefine.C(3/5w, -4/5w, 0);
byPointXYZEmpty(D, E, F, G, H, K, Pnw', Pne', Pse', Psw');
pointXYZ.D := pointXYZ.A + s1;
pointXYZ.E := pointXYZ.B + s1;
pointXYZ.F := pointXYZ.C + s1;
pointXYZ.H := pointXYZ.A + s0;
pointXYZ.G:= pointXYZ.B + s0;
pointXYZ.K := pointXYZ.C + s0;
pointXYZ.Pnw' := pointXYZ.Pnw + s0;
pointXYZ.Pne' := pointXYZ.Pne + s0;
pointXYZ.Pse' := pointXYZ.Pse + s0;
pointXYZ.Psw' := pointXYZ.Psw + s0;
byPointLabelRemove(Pnw, Pne, Pse, Psw, Pnw', Pne', Pse', Psw');
bySetProjection(-65, 0, -30);
byLineDefine(A, B, byyellow, 0, 0);
byLineDefine(B, C, byyellow, 1, 0);
byLineDefine(D, E, byred, 1, 0);
byLineDefine(E, F, byblue, 1, 0);
byLineDefine(H,G, byred, 0, 0);
byLineDefine(G, K, byblue, 0, 0);
byLineDefine(B, G, black, 0, 0);
draw byPolygon.planeTwo(Pnw', Pne', Pse', Psw')(byyellow);
draw byAngle(B, G, H, byred, 0);
draw byAngle(B, G, K, byblue, 0);
draw byAngle(G, B, A, byyellow, 0);
draw byNamedLineSeq(0)(HG,GK);
draw byNamedLineSeq(0)(DE, EF);
draw byNamedLine(BG);
draw byPolygon.planeOne(Pnw, Pne, Pse, Psw)(white);
draw byNamedLineSeq(0)(AB, BC);
draw byLabelsOnPolygon(H,A, B, C, K, G)(0, 0);
draw byLabelsOnPolygon(F, E, D, noPoint)(0, 0);
}
\drawCurrentPictureInMargin
\problem{I}{f}{two straight lines meeting one another be parallel to two straight lines meeting one another, not being in the same plane, the planes through them are parallel.}
For let the two straight lines \drawUnitLine{AB}, \drawUnitLine{BC} meeting one another be parallel to the two straight lines \drawUnitLine{DE}, \drawUnitLine{EF} meeting one another, not being in the same plane. I say that the planes \drawPolygon{planeOne}, \drawPolygon{planeTwo} produced through \drawUnitLine{AB}, \drawUnitLine{BC} and \drawUnitLine{DE}, \drawUnitLine{EF} will not meet one another.
For let \drawUnitLine{BG} be drawn from the point \drawPointL{B} perpendicular to the \drawPolygon{planeTwo}. \byref{prop:XI.XI} And let it meet \drawPolygon{planeTwo} at the point \drawPointL{G}. Through \drawPointL{G} let be drawn $\drawUnitLine{GH} \parallel \drawUnitLine{ED}$, and $\drawUnitLine{GK} \parallel \drawUnitLine{EF}$. \byref{prop:I.XXXI}
Now, since $\drawUnitLine{BG} \perp \drawPolygon{planeTwo}$, therefore it will also make right angles with all the straight lines which meet it and are in \drawPolygon{planeTwo}. \byref{def:XI.III} $\therefore \drawAngle{BGH} = \drawAngle{BGK} = \drawRightAngle$.
And, since $\drawUnitLine{BA} \parallel \drawUnitLine{GH}$ \byref{prop:XI.IX}, $\therefore \drawAngle{GBA} + \drawAngle{BGH} = \drawTwoRightAngles$. \byref{prop:I.XXIX}
But $\drawAngle{BGH} = \drawRightAngle$, $\therefore \drawAngle{GBA} = \drawRightAngle$, $\therefore \drawUnitLine{GB} \perp \drawUnitLine{BA}$.
For the same reason $\drawUnitLine{GB} \perp \drawUnitLine{BC}$.
Since then the straight line \drawUnitLine{GB} is set up at right angles to the two straight lines \drawUnitLine{BA}, \drawUnitLine{BC} which cut one another, $\therefore \drawUnitLine{GB} \perp \drawPolygon{planeOne}$. \byref{prop:XI.IV}
But planes to which the same straight line is at right angles are parallel \byref{prop:XI.XIV}, $\therefore \drawPolygon{planeOne} \parallel \drawPolygon{planeTwo}$
\qed
\starttheorem{Prop. XVI. Theor.}\label{prop:XI.XVI}
\defineNewPicture{
numeric w, d;
color s;
w := 3/2cm;
d := 3/2cm;
s := (0, 0, -d);
byPointXYZDefine.A'(0, 0, 0);
byPointXYZDefine.B(w, 0, 0);
byPointXYZDefine.B'(w, -w, 0);
byPointXYZDefine.A(0, -w, 0);
byPointXYZEmpty(C, C', D, D', E, F, G, H, K);
pointXYZ.C := pointXYZ.A + s;
pointXYZ.C' := pointXYZ.A' + s;
pointXYZ.D := pointXYZ.B + s;
pointXYZ.D' := pointXYZ.B' + s;
pointXYZ.E := 2/3[pointXYZ.A, pointXYZ.A'];
pointXYZ.F := 2/3[pointXYZ.B', pointXYZ.B];