-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscorer.py
36 lines (33 loc) · 1.16 KB
/
scorer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import csv
import os
import pandas as pd
data = []
def process_csv_files(input_directory):
for filename in os.listdir(input_directory):
if filename.endswith('.csv'):
input_file = os.path.join(input_directory, filename)
with open(input_file, 'r') as file:
reader = csv.reader(file)
header = next(reader)
print("header:", header)
for row in reader:
hash = row[0]
score = row[1]
data.append({"hashkey":hash, "score":score})
directory_path = './human_result'
process_csv_files(directory_path)
# prompt name
prompt_name = "simple"
# df1
csv_file_path = './human_dojo_text/'+prompt_name+'_hashed_all.csv'
df1 = pd.read_csv(csv_file_path)
# df2
df2 = pd.DataFrame(data)
# merge and move column
key_column = 'hashkey'
merged_df = pd.merge(df1, df2, on=key_column, how='outer')
merged_df.insert(1, 'score', merged_df.pop('score'))
# merged_df = merged_df.sort_values(by="model")
merged_df = merged_df.sort_values(by="score",ascending=False)
merged_df.to_csv("./human_score_all/"+prompt_name+"_human_scored.csv")
print(merged_df)