-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
76 lines (63 loc) · 2.17 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
"""
@author: Viet Nguyen <[email protected]>
"""
import argparse
import numpy as np
import torch
import cv2
from game import Game
from pynput.keyboard import Key, Controller
from PIL import ImageGrab
import time
keyboard = Controller()
def get_args():
parser = argparse.ArgumentParser(
"""Implementation of Deep Q Network to play Tetris""")
parser.add_argument("--width", type=int, default=10, help="The common width for all images")
parser.add_argument("--height", type=int, default=20, help="The common height for all images")
parser.add_argument("--block_size", type=int, default=30, help="Size of a block")
parser.add_argument("--fps", type=int, default=300, help="frames per second")
parser.add_argument("--saved_path", type=str, default="trained_models")
parser.add_argument("--output", type=str, default="output.mp4")
args = parser.parse_args()
return args
def test(opt):
if torch.cuda.is_available():
torch.cuda.manual_seed(123)
else:
torch.manual_seed(123)
if torch.cuda.is_available():
model = torch.load("{}/tetris".format(opt.saved_path))
else:
model = torch.load("{}/tetris".format(opt.saved_path), map_location=lambda storage, loc: storage)
model.eval()
env = Game()
env.reset()
if torch.cuda.is_available():
model.cuda()
time.sleep(1)
keyboard.press('n')
while True:
screen = ImageGrab.grab()
screen = np.array(screen)
img = cv2.cvtColor(screen, cv2.COLOR_BGR2RGB)
env.detectBoard(img)
env.getPiece()
next_steps = env.getNextState()
next_actions, next_states = zip(*next_steps.items())
next_states = torch.stack(next_states)
if torch.cuda.is_available():
next_states = next_states.cuda()
predictions = model(next_states)[:, 0]
index = torch.argmax(predictions).item()
action = next_actions[index]
print(action)
_, done = env.step(action)
if done:
break
keyboard.press("A")
keyboard.press("9")
keyboard.press(Key.enter)
if __name__ == "__main__":
opt = get_args()
test(opt)