-
Notifications
You must be signed in to change notification settings - Fork 0
/
day12.p
291 lines (242 loc) · 10.7 KB
/
day12.p
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
/*
--- Day 12: The N-Body Problem ---
The space near Jupiter is not a very safe place; you need to be careful of a big distracting red spot, extreme radiation, and a whole lot of moons swirling around. You decide to start by tracking the four largest moons: Io, Europa, Ganymede, and Callisto.
After a brief scan, you calculate the position of each moon (your puzzle input). You just need to simulate their motion so you can avoid them.
Each moon has a 3-dimensional position (x, y, and z) and a 3-dimensional velocity. The position of each moon is given in your scan; the x, y, and z velocity of each moon starts at 0.
Simulate the motion of the moons in time steps. Within each time step, first update the velocity of every moon by applying gravity. Then, once all moons' velocities have been updated, update the position of every moon by applying velocity. Time progresses by one step once all of the positions are updated.
To apply gravity, consider every pair of moons. On each axis (x, y, and z), the velocity of each moon changes by exactly +1 or -1 to pull the moons together. For example, if Ganymede has an x position of 3, and Callisto has a x position of 5, then Ganymede's x velocity changes by +1 (because 5 > 3) and Callisto's x velocity changes by -1 (because 3 < 5). However, if the positions on a given axis are the same, the velocity on that axis does not change for that pair of moons.
Once all gravity has been applied, apply velocity: simply add the velocity of each moon to its own position. For example, if Europa has a position of x=1, y=2, z=3 and a velocity of x=-2, y=0,z=3, then its new position would be x=-1, y=2, z=6. This process does not modify the velocity of any moon.
For example, suppose your scan reveals the following positions:
<x=-1, y=0, z=2>
<x=2, y=-10, z=-7>
<x=4, y=-8, z=8>
<x=3, y=5, z=-1>
Simulating the motion of these moons would produce the following:
After 0 steps:
pos=<x=-1, y= 0, z= 2>, vel=<x= 0, y= 0, z= 0>
pos=<x= 2, y=-10, z=-7>, vel=<x= 0, y= 0, z= 0>
pos=<x= 4, y= -8, z= 8>, vel=<x= 0, y= 0, z= 0>
pos=<x= 3, y= 5, z=-1>, vel=<x= 0, y= 0, z= 0>
After 1 step:
pos=<x= 2, y=-1, z= 1>, vel=<x= 3, y=-1, z=-1>
pos=<x= 3, y=-7, z=-4>, vel=<x= 1, y= 3, z= 3>
pos=<x= 1, y=-7, z= 5>, vel=<x=-3, y= 1, z=-3>
pos=<x= 2, y= 2, z= 0>, vel=<x=-1, y=-3, z= 1>
After 2 steps:
pos=<x= 5, y=-3, z=-1>, vel=<x= 3, y=-2, z=-2>
pos=<x= 1, y=-2, z= 2>, vel=<x=-2, y= 5, z= 6>
pos=<x= 1, y=-4, z=-1>, vel=<x= 0, y= 3, z=-6>
pos=<x= 1, y=-4, z= 2>, vel=<x=-1, y=-6, z= 2>
After 3 steps:
pos=<x= 5, y=-6, z=-1>, vel=<x= 0, y=-3, z= 0>
pos=<x= 0, y= 0, z= 6>, vel=<x=-1, y= 2, z= 4>
pos=<x= 2, y= 1, z=-5>, vel=<x= 1, y= 5, z=-4>
pos=<x= 1, y=-8, z= 2>, vel=<x= 0, y=-4, z= 0>
After 4 steps:
pos=<x= 2, y=-8, z= 0>, vel=<x=-3, y=-2, z= 1>
pos=<x= 2, y= 1, z= 7>, vel=<x= 2, y= 1, z= 1>
pos=<x= 2, y= 3, z=-6>, vel=<x= 0, y= 2, z=-1>
pos=<x= 2, y=-9, z= 1>, vel=<x= 1, y=-1, z=-1>
After 5 steps:
pos=<x=-1, y=-9, z= 2>, vel=<x=-3, y=-1, z= 2>
pos=<x= 4, y= 1, z= 5>, vel=<x= 2, y= 0, z=-2>
pos=<x= 2, y= 2, z=-4>, vel=<x= 0, y=-1, z= 2>
pos=<x= 3, y=-7, z=-1>, vel=<x= 1, y= 2, z=-2>
After 6 steps:
pos=<x=-1, y=-7, z= 3>, vel=<x= 0, y= 2, z= 1>
pos=<x= 3, y= 0, z= 0>, vel=<x=-1, y=-1, z=-5>
pos=<x= 3, y=-2, z= 1>, vel=<x= 1, y=-4, z= 5>
pos=<x= 3, y=-4, z=-2>, vel=<x= 0, y= 3, z=-1>
After 7 steps:
pos=<x= 2, y=-2, z= 1>, vel=<x= 3, y= 5, z=-2>
pos=<x= 1, y=-4, z=-4>, vel=<x=-2, y=-4, z=-4>
pos=<x= 3, y=-7, z= 5>, vel=<x= 0, y=-5, z= 4>
pos=<x= 2, y= 0, z= 0>, vel=<x=-1, y= 4, z= 2>
After 8 steps:
pos=<x= 5, y= 2, z=-2>, vel=<x= 3, y= 4, z=-3>
pos=<x= 2, y=-7, z=-5>, vel=<x= 1, y=-3, z=-1>
pos=<x= 0, y=-9, z= 6>, vel=<x=-3, y=-2, z= 1>
pos=<x= 1, y= 1, z= 3>, vel=<x=-1, y= 1, z= 3>
After 9 steps:
pos=<x= 5, y= 3, z=-4>, vel=<x= 0, y= 1, z=-2>
pos=<x= 2, y=-9, z=-3>, vel=<x= 0, y=-2, z= 2>
pos=<x= 0, y=-8, z= 4>, vel=<x= 0, y= 1, z=-2>
pos=<x= 1, y= 1, z= 5>, vel=<x= 0, y= 0, z= 2>
After 10 steps:
pos=<x= 2, y= 1, z=-3>, vel=<x=-3, y=-2, z= 1>
pos=<x= 1, y=-8, z= 0>, vel=<x=-1, y= 1, z= 3>
pos=<x= 3, y=-6, z= 1>, vel=<x= 3, y= 2, z=-3>
pos=<x= 2, y= 0, z= 4>, vel=<x= 1, y=-1, z=-1>
Then, it might help to calculate the total energy in the system. The total energy for a single moon is its potential energy multiplied by its kinetic energy. A moon's potential energy is the sum of the absolute values of its x, y, and z position coordinates. A moon's kinetic energy is the sum of the absolute values of its velocity coordinates. Below, each line shows the calculations for a moon's potential energy (pot), kinetic energy (kin), and total energy:
Energy after 10 steps:
pot: 2 + 1 + 3 = 6; kin: 3 + 2 + 1 = 6; total: 6 * 6 = 36
pot: 1 + 8 + 0 = 9; kin: 1 + 1 + 3 = 5; total: 9 * 5 = 45
pot: 3 + 6 + 1 = 10; kin: 3 + 2 + 3 = 8; total: 10 * 8 = 80
pot: 2 + 0 + 4 = 6; kin: 1 + 1 + 1 = 3; total: 6 * 3 = 18
Sum of total energy: 36 + 45 + 80 + 18 = 179
In the above example, adding together the total energy for all moons after 10 steps produces the total energy in the system, 179.
Here's a second example:
<x=-8, y=-10, z=0>
<x=5, y=5, z=10>
<x=2, y=-7, z=3>
<x=9, y=-8, z=-3>
Every ten steps of simulation for 100 steps produces:
After 0 steps:
pos=<x= -8, y=-10, z= 0>, vel=<x= 0, y= 0, z= 0>
pos=<x= 5, y= 5, z= 10>, vel=<x= 0, y= 0, z= 0>
pos=<x= 2, y= -7, z= 3>, vel=<x= 0, y= 0, z= 0>
pos=<x= 9, y= -8, z= -3>, vel=<x= 0, y= 0, z= 0>
After 10 steps:
pos=<x= -9, y=-10, z= 1>, vel=<x= -2, y= -2, z= -1>
pos=<x= 4, y= 10, z= 9>, vel=<x= -3, y= 7, z= -2>
pos=<x= 8, y=-10, z= -3>, vel=<x= 5, y= -1, z= -2>
pos=<x= 5, y=-10, z= 3>, vel=<x= 0, y= -4, z= 5>
After 20 steps:
pos=<x=-10, y= 3, z= -4>, vel=<x= -5, y= 2, z= 0>
pos=<x= 5, y=-25, z= 6>, vel=<x= 1, y= 1, z= -4>
pos=<x= 13, y= 1, z= 1>, vel=<x= 5, y= -2, z= 2>
pos=<x= 0, y= 1, z= 7>, vel=<x= -1, y= -1, z= 2>
After 30 steps:
pos=<x= 15, y= -6, z= -9>, vel=<x= -5, y= 4, z= 0>
pos=<x= -4, y=-11, z= 3>, vel=<x= -3, y=-10, z= 0>
pos=<x= 0, y= -1, z= 11>, vel=<x= 7, y= 4, z= 3>
pos=<x= -3, y= -2, z= 5>, vel=<x= 1, y= 2, z= -3>
After 40 steps:
pos=<x= 14, y=-12, z= -4>, vel=<x= 11, y= 3, z= 0>
pos=<x= -1, y= 18, z= 8>, vel=<x= -5, y= 2, z= 3>
pos=<x= -5, y=-14, z= 8>, vel=<x= 1, y= -2, z= 0>
pos=<x= 0, y=-12, z= -2>, vel=<x= -7, y= -3, z= -3>
After 50 steps:
pos=<x=-23, y= 4, z= 1>, vel=<x= -7, y= -1, z= 2>
pos=<x= 20, y=-31, z= 13>, vel=<x= 5, y= 3, z= 4>
pos=<x= -4, y= 6, z= 1>, vel=<x= -1, y= 1, z= -3>
pos=<x= 15, y= 1, z= -5>, vel=<x= 3, y= -3, z= -3>
After 60 steps:
pos=<x= 36, y=-10, z= 6>, vel=<x= 5, y= 0, z= 3>
pos=<x=-18, y= 10, z= 9>, vel=<x= -3, y= -7, z= 5>
pos=<x= 8, y=-12, z= -3>, vel=<x= -2, y= 1, z= -7>
pos=<x=-18, y= -8, z= -2>, vel=<x= 0, y= 6, z= -1>
After 70 steps:
pos=<x=-33, y= -6, z= 5>, vel=<x= -5, y= -4, z= 7>
pos=<x= 13, y= -9, z= 2>, vel=<x= -2, y= 11, z= 3>
pos=<x= 11, y= -8, z= 2>, vel=<x= 8, y= -6, z= -7>
pos=<x= 17, y= 3, z= 1>, vel=<x= -1, y= -1, z= -3>
After 80 steps:
pos=<x= 30, y= -8, z= 3>, vel=<x= 3, y= 3, z= 0>
pos=<x= -2, y= -4, z= 0>, vel=<x= 4, y=-13, z= 2>
pos=<x=-18, y= -7, z= 15>, vel=<x= -8, y= 2, z= -2>
pos=<x= -2, y= -1, z= -8>, vel=<x= 1, y= 8, z= 0>
After 90 steps:
pos=<x=-25, y= -1, z= 4>, vel=<x= 1, y= -3, z= 4>
pos=<x= 2, y= -9, z= 0>, vel=<x= -3, y= 13, z= -1>
pos=<x= 32, y= -8, z= 14>, vel=<x= 5, y= -4, z= 6>
pos=<x= -1, y= -2, z= -8>, vel=<x= -3, y= -6, z= -9>
After 100 steps:
pos=<x= 8, y=-12, z= -9>, vel=<x= -7, y= 3, z= 0>
pos=<x= 13, y= 16, z= -3>, vel=<x= 3, y=-11, z= -5>
pos=<x=-29, y=-11, z= -1>, vel=<x= -3, y= 7, z= 4>
pos=<x= 16, y=-13, z= 23>, vel=<x= 7, y= 1, z= 1>
Energy after 100 steps:
pot: 8 + 12 + 9 = 29; kin: 7 + 3 + 0 = 10; total: 29 * 10 = 290
pot: 13 + 16 + 3 = 32; kin: 3 + 11 + 5 = 19; total: 32 * 19 = 608
pot: 29 + 11 + 1 = 41; kin: 3 + 7 + 4 = 14; total: 41 * 14 = 574
pot: 16 + 13 + 23 = 52; kin: 7 + 1 + 1 = 9; total: 52 * 9 = 468
Sum of total energy: 290 + 608 + 574 + 468 = 1940
What is the total energy in the system after simulating the moons given in your scan for 1000 steps?
*/
/*
<x=-4, y=-9, z=-3>
<x=-13, y=-11, z=0 >
<x=-17, y=-7, z=15>
<x=-16, y=4, z=2 >
*/
DEFINE VARIABLE i AS INTEGER NO-UNDO.
DEFINE VARIABLE iStep AS INTEGER NO-UNDO.
DEFINE VARIABLE iVX AS INTEGER EXTENT 4 NO-UNDO.
DEFINE VARIABLE iVY AS INTEGER EXTENT 4 NO-UNDO.
DEFINE VARIABLE iVZ AS INTEGER EXTENT 4 NO-UNDO.
DEFINE VARIABLE iX AS INTEGER EXTENT 4 NO-UNDO.
DEFINE VARIABLE iY AS INTEGER EXTENT 4 NO-UNDO.
DEFINE VARIABLE iZ AS INTEGER EXTENT 4 NO-UNDO.
DEFINE VARIABLE j AS INTEGER NO-UNDO.
ETIME(YES).
ASSIGN
iX[1] = -4
iY[1] = -9
iZ[1] = -3
iX[2] = -13
iY[2] = -11
iZ[2] = 0
iX[3] = -17
iY[3] = -7
iZ[3] = 15
iX[4] = -16
iY[4] = 4
iZ[4] = 2
.
/*ASSIGN
iX[1] = -1
iX[2] = 2
iX[3] = 4
iX[4] = 3
iY[1] = 0
iY[2] = -10
iY[3] = -8
iY[4] = 5
iZ[1] = 2
iZ[2] = -7
iZ[3] = 8
iZ[4] = -1
.
*/
FUNCTION applyGravity RETURNS LOGICAL ( i AS INTEGER, j AS INTEGER ):
IF iX[i] < iX[j] THEN ASSIGN
iVX[i] = iVX[i] + 1
iVX[j] = iVX[j] - 1.
ELSE IF iX[i] > iX[j] THEN ASSIGN
iVX[i] = iVX[i] - 1
iVX[j] = iVX[j] + 1.
IF iY[i] < iY[j] THEN ASSIGN
iVY[i] = iVY[i] + 1
iVY[j] = iVY[j] - 1.
ELSE IF iY[i] > iY[j] THEN ASSIGN
iVY[i] = iVY[i] - 1
iVY[j] = iVY[j] + 1.
IF iZ[i] < iZ[j] THEN ASSIGN
iVZ[i] = iVZ[i] + 1
iVZ[j] = iVZ[j] - 1.
ELSE IF iZ[i] > iZ[j] THEN ASSIGN
iVZ[i] = iVZ[i] - 1
iVZ[j] = iVZ[j] + 1.
END FUNCTION.
DO iStep = 1 TO 1000:
DO i = 1 TO 3:
DO j = i + 1 TO 4:
applyGravity(i, j).
END.
END.
DO i = 1 TO 4:
ASSIGN
iX[i] = iX[i] + iVX[i]
iY[i] = iY[i] + iVY[i]
iZ[i] = iZ[i] + iVZ[i].
END.
END.
DEFINE VARIABLE iNRJ AS INTEGER NO-UNDO.
DO i = 1 TO 4:
/* MESSAGE SUBSTITUTE("pos=<x=&1, y=&2, z=&3>, vel=<x=&4, y=&5, z=&6>", iX[i],iY[i],iZ[i],iVX[i],iVY[i],iVZ[i]) */
/* VIEW-AS ALERT-BOX INFO BUTTONS OK. */
iNRJ = iNRJ + (ABS(iX[i]) + ABS(iY[i]) + ABS(iZ[i])) * (ABS(iVX[i]) + ABS(iVY[i]) + ABS(iVZ[i])).
END.
MESSAGE ETIME SKIP iNRJ
VIEW-AS ALERT-BOX INFO BUTTONS OK.
/*
---------------------------
Information (Press HELP to view stack trace)
---------------------------
54
6220
---------------------------
Aceptar Ayuda
---------------------------
*/