-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathtiny_bvh_gpu.cpp
182 lines (169 loc) · 7.54 KB
/
tiny_bvh_gpu.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
// This example shows how to build a basic GPU path tracer using
// tinybvh. TinyOCL is used to render on the GPU using OpenCL.
#define FENSTER_APP_IMPLEMENTATION
#define SCRWIDTH 1280
#define SCRHEIGHT 720
#include "external/fenster.h" // https://github.com/zserge/fenster
// This application uses tinybvh - And this file will include the implementation.
#define TINYBVH_IMPLEMENTATION
#include "tiny_bvh.h"
using namespace tinybvh;
// This application uses tinyocl - And this file will include the implementation.
#define TINY_OCL_IMPLEMENTATION
#include "tiny_ocl.h"
// Other includes
#include <fstream>
// Application variables
static BVH8_CWBVH bvh;
static bvhvec4* tris = 0;
static int triCount = 0, frameIdx = 0, spp = 0;
static Kernel* init, * clear, * rayGen, * extend, * shade;
static Kernel* updateCounters1, * updateCounters2, * traceShadows, * finalize;
static Buffer* pixels, * accumulator, * raysIn, * raysOut, * connections, * triData;
static Buffer* cwbvhNodes = 0, * cwbvhTris = 0, * noise = 0;
static size_t computeUnits;
static uint32_t* blueNoise = new uint32_t[128 * 128 * 8];
// View pyramid for a pinhole camera
struct RenderData
{
bvhvec4 eye = bvhvec4( 0, 30, 0, 0 ), view = bvhvec4( -1, 0, 0, 0 ), C, p0, p1, p2;
uint32_t frameIdx, dummy1, dummy2, dummy3;
} rd;
// Scene management - Append a file, with optional position, scale and color override, tinyfied
void AddMesh( const char* file, float scale = 1, bvhvec3 pos = {}, int c = 0, int N = 0 )
{
std::fstream s{ file, s.binary | s.in }; s.read( (char*)&N, 4 );
bvhvec4* data = (bvhvec4*)tinybvh::malloc64( (N + triCount) * 48 );
if (tris) memcpy( data, tris, triCount * 48 ), tinybvh::free64( tris );
tris = data, s.read( (char*)tris + triCount * 48, N * 48 ), triCount += N;
for (int* b = (int*)tris + (triCount - N) * 12, i = 0; i < N * 3; i++)
*(bvhvec3*)b = *(bvhvec3*)b * scale + pos, b[3] = c ? c : b[3], b += 4;
}
void AddQuad( const bvhvec3 pos, const float w, const float d, int c )
{
bvhvec4* data = (bvhvec4*)tinybvh::malloc64( (triCount + 2) * 48 );
if (tris) memcpy( data + 6, tris, triCount * 48 ), tinybvh::free64( tris );
data[0] = bvhvec3( -w, 0, -d ), data[1] = bvhvec3( w, 0, -d );
data[2] = bvhvec3( w, 0, d ), data[3] = bvhvec3( -w, 0, -d ), tris = data;
data[4] = bvhvec3( w, 0, d ), data[5] = bvhvec3( -w, 0, d ), triCount += 2;
for (int i = 0; i < 6; i++) data[i] = 0.5f * data[i] + pos, data[i].w = *(float*)&c;
}
// Blue noise from file
void LoadBlueNoise()
{
std::fstream s{ "./testdata/blue_noise_128x128x8_2d.raw", s.binary | s.in };
s.read( (char*)blueNoise, 128 * 128 * 8 * 4 );
}
// Application init
void Init()
{
// create OpenCL kernels
init = new Kernel( "wavefront.cl", "SetRenderData" );
clear = new Kernel( "wavefront.cl", "Clear" );
rayGen = new Kernel( "wavefront.cl", "Generate" );
extend = new Kernel( "wavefront.cl", "Extend" );
shade = new Kernel( "wavefront.cl", "Shade" );
updateCounters1 = new Kernel( "wavefront.cl", "UpdateCounters1" );
updateCounters2 = new Kernel( "wavefront.cl", "UpdateCounters2" );
traceShadows = new Kernel( "wavefront.cl", "Connect" );
finalize = new Kernel( "wavefront.cl", "Finalize" );
// we need the 'compute unit' or 'SM' count for wavefront rendering; ask OpenCL for it.
clGetDeviceInfo( init->GetDeviceID(), CL_DEVICE_MAX_COMPUTE_UNITS, sizeof( size_t ), &computeUnits, NULL );
// create OpenCL buffers for wavefront path tracing
int N = SCRWIDTH * SCRHEIGHT;
pixels = new Buffer( N * sizeof( uint32_t ) );
raysIn = new Buffer( N * sizeof( bvhvec4 ) * 4 );
raysOut = new Buffer( N * sizeof( bvhvec4 ) * 4 );
connections = new Buffer( N * 3 * sizeof( bvhvec4 ) * 3 );
accumulator = new Buffer( N * sizeof( bvhvec4 ) );
pixels = new Buffer( N * sizeof( uint32_t ) );
LoadBlueNoise();
noise = new Buffer( 128 * 128 * 8 * sizeof( uint32_t ), blueNoise );
noise->CopyToDevice();
// load raw vertex data
// AddMesh( "./testdata/cryteksponza.bin", 1, bvhvec3( 0 ), 0xffffff );
// AddMesh( "./testdata/lucy.bin", 1.1f, bvhvec3( -2, 4.1f, -3 ), 0x2ffff88 );
AddQuad( bvhvec3( -22, 12, 2 ), 9, 5, 0x1ffffff ); // hard-coded light source
AddMesh( "./testdata/bistro_ext_part1.bin", 1, bvhvec3( 0 ) );
AddMesh( "./testdata/bistro_ext_part2.bin", 1, bvhvec3( 0 ) );
// build bvh (here: 'compressed wide bvh', for efficient GPU rendering)
if (!bvh.Load( "cwbvh.bin", triCount ))
{
bvh.Build( tris, triCount );
bvh.Save( "cwbvh.bin" ); // cache for next run.
}
// create OpenCL buffers for BVH data
cwbvhNodes = new Buffer( bvh.usedBlocks * sizeof( bvhvec4 ), bvh.bvh8Data );
cwbvhTris = new Buffer( bvh.idxCount * 3 * sizeof( bvhvec4 ), bvh.bvh8Tris );
cwbvhNodes->CopyToDevice();
cwbvhTris->CopyToDevice();
triData = new Buffer( triCount * 3 * sizeof( bvhvec4 ), tris );
triData->CopyToDevice();
// load camera position / direction from file
std::fstream t = std::fstream{ "camera_gpu.bin", t.binary | t.in };
if (!t.is_open()) return;
t.read( (char*)&rd, sizeof( rd ) );
}
// Keyboard handling
bool UpdateCamera( float delta_time_s, fenster& f )
{
bvhvec3 right = normalize( cross( bvhvec3( 0, 1, 0 ), rd.view ) ), up = 0.8f * cross( rd.view, right );
// get camera controls.
float moved = 0, spd = 10.0f * delta_time_s;
if (f.keys['A'] || f.keys['D']) rd.eye += right * (f.keys['D'] ? spd : -spd), moved = 1;
if (f.keys['W'] || f.keys['S']) rd.eye += rd.view * (f.keys['W'] ? spd : -spd), moved = 1;
if (f.keys['R'] || f.keys['F']) rd.eye += up * 2.0f * (f.keys['R'] ? spd : -spd), moved = 1;
if (f.keys[20]) rd.view = normalize( rd.view + right * -0.1f * spd ), moved = 1;
if (f.keys[19]) rd.view = normalize( rd.view + right * 0.1f * spd ), moved = 1;
if (f.keys[17]) rd.view = normalize( rd.view + up * -0.1f * spd ), moved = 1;
if (f.keys[18]) rd.view = normalize( rd.view + up * 0.1f * spd ), moved = 1;
// recalculate right, up
right = normalize( cross( bvhvec3( 0, 1, 0 ), rd.view ) ), up = 0.8f * cross( rd.view, right );
bvhvec3 C = rd.eye + 1.2f * rd.view;
rd.p0 = C - right + up, rd.p1 = C + right + up, rd.p2 = C - right - up;
return moved > 0;
}
// Application Tick
void Tick( float delta_time_s, fenster& f, uint32_t* buf )
{
// handle user input and update camera
int N = SCRWIDTH * SCRHEIGHT;
if (UpdateCamera( delta_time_s, f ) || frameIdx++ == 0)
{
clear->SetArguments( accumulator );
clear->Run( N );
spp = 1;
}
// wavefront step 0: render on the GPU
init->SetArguments( N, rd.eye, rd.p0, rd.p1, rd.p2, frameIdx, SCRWIDTH, SCRHEIGHT, cwbvhNodes, cwbvhTris, noise );
init->Run( 1 ); // init atomic counters, set buffer ptrs etc.
rayGen->SetArguments( raysOut, spp * 19191 );
rayGen->Run2D( oclint2( SCRWIDTH, SCRHEIGHT ) );
for (int i = 0; i < 3; i++)
{
swap( raysOut, raysIn );
extend->SetArguments( raysIn );
extend->Run( computeUnits * 64 * 16, 64 );
updateCounters1->Run( 1 );
shade->SetArguments( accumulator, raysIn, raysOut, connections, triData, spp - 1 );
shade->Run( computeUnits * 64 * 16, 64 );
updateCounters2->Run( 1 );
}
traceShadows->SetArguments( accumulator, connections );
traceShadows->Run( computeUnits * 64 * 8, 64 );
finalize->SetArguments( accumulator, 1.0f / (float)spp++, pixels );
finalize->Run2D( oclint2( SCRWIDTH, SCRHEIGHT ) );
pixels->CopyFromDevice();
memcpy( buf, pixels->GetHostPtr(), N * sizeof( uint32_t ) );
// print frame time / rate in window title
char title[50];
sprintf( title, "tiny_bvh %.2f s %.2f Hz", delta_time_s, 1.0f / delta_time_s );
fenster_update_title( &f, title );
}
// Application Shutdown
void Shutdown()
{
// save camera position / direction to file
std::fstream s = std::fstream{ "camera_gpu.bin", s.binary | s.out };
s.write( (char*)&rd, sizeof( rd ) );
}