-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathhparams.py
111 lines (84 loc) · 2.72 KB
/
hparams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import os
import yaml
import tensorflow as _tf
_config_file_name = "config.yml"
_source_dir = os.path.dirname(os.path.realpath(__file__))
class Hparams():
"""Dummy class"""
def keys(self):
return self.__dict__.keys()
def items(self):
return self.__dict__.items()
def values(self):
return self.__dict__.values()
def __len__(self):
return len(self.__dict__)
def __getitem__(self, key):
return getattr(self, key)
def __setitem__(self, key, value):
return setattr(self, key, value)
def __contains__(self, key):
return key in self.__dict__
def __repr__(self):
return self.__dict__.__repr__()
def _update(d, key, value):
if key in d and d[key] != value:
_tf.logging.info("The value of '{}' is '{}', but is overwritten by '{}'.".format(key, d[key], value))
d[key] = value
def _save(model_dir, d):
if not os.path.exists(model_dir):
os.makedirs(model_dir)
config_yml = yaml.dump(d, default_flow_style=False)
with open(os.path.join(model_dir, _config_file_name), "w+") as f:
f.write(config_yml)
def _print(d):
_tf.logging.info("------------------- All configurations --------------------")
for k, v in d.items():
_tf.logging.info(" %s = %s", k, v)
_tf.logging.info("------------------------------------------------------------")
def _parse_value(v):
try:
v = int(v)
except ValueError:
try:
v = float(v)
except ValueError:
if len(v.split(",")) > 1:
v = [_parse_value(x.strip()) for x in v.split(",") if x != ""]
else:
v_norm = v.lower().strip()
if v_norm == "true":
v = True
elif v_norm == "false":
v = False
elif v_norm == "null":
v = None
return v
def import_configs(hparams, configs):
configs = [os.path.join(_source_dir, _config_file_name)] + configs
for cfg in configs:
kv = [s.strip() for s in cfg.split("=", 1)]
if len(kv) == 1:
if not os.path.exists(cfg):
raise ValueError("The configuration file doesn't exist; {}".format(cfg))
obj = yaml.load(open(cfg).read())
for k, v in obj.items():
_update(hparams, k, v)
else:
k, v = kv
v = _parse_value(v)
_update(hparams, k, v)
def create_hparams(model_dir, configs, initialize=False, print=True):
saved_config_file = os.path.join(model_dir, _config_file_name)
if not os.path.isdir(model_dir):
os.mkdir(os.path.relpath(model_dir))
if os.path.exists(saved_config_file):
configs = [saved_config_file] + configs
hparams = Hparams()
import_configs(hparams, configs)
_update(hparams, "model_dir", model_dir)
if not os.path.exists(saved_config_file) and initialize:
_save(model_dir, hparams)
if print:
_print(hparams)
return hparams