forked from susanli2016/Data-Analysis-with-R
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraffic_safety.Rmd
419 lines (355 loc) · 14.1 KB
/
traffic_safety.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
---
title: "What I learned from Traffic Accidents Data"
output: html_document
---
The National Highway Traffic Safety Administration (NHTSA) has some really cool data that they made public.
```{r global_options, include=FALSE}
knitr::opts_chunk$set(echo=FALSE, warning=FALSE, message=FALSE)
```
```{r}
library(XML)
library(RCurl)
library(rvest)
library(dplyr)
library(tidyr)
library(ggplot2)
library(ggthemes)
library(reshape)
library(treemap)
```
```{r}
theurl <- "Text_NLP_paper/FARS.html"
file<-read_html(theurl)
tables<-html_nodes(file, "table")
table1 <- html_table(tables[1], fill = TRUE)
```
```{r}
df <- as.data.frame(table1)
df <- df[23:48, ]
colnames(df) <- c('national', 2015, 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994)
df <- df[-1, ]
df <- df[,colSums(is.na(df))<nrow(df)]
```
```{r}
df$`2015` <- gsub(",", "", df$`2015`)
df$`2014` <- gsub(",", "", df$`2014`)
df$`2013` <- gsub(",", "", df$`2013`)
df$`2012` <- gsub(",", "", df$`2012`)
df$`2011` <- gsub(",", "", df$`2011`)
df$`2010` <- gsub(",", "", df$`2010`)
df$`2009` <- gsub(",", "", df$`2009`)
df$`2008` <- gsub(",", "", df$`2008`)
df$`2007` <- gsub(",", "", df$`2007`)
df$`2006` <- gsub(",", "", df$`2006`)
df$`2005` <- gsub(",", "", df$`2005`)
df$`2004` <- gsub(",", "", df$`2004`)
df$`2003` <- gsub(",", "", df$`2003`)
df$`2002` <- gsub(",", "", df$`2002`)
df$`2001` <- gsub(",", "", df$`2001`)
df$`2000` <- gsub(",", "", df$`2000`)
df$`1999` <- gsub(",", "", df$`1999`)
df$`1998` <- gsub(",", "", df$`1998`)
df$`1997` <- gsub(",", "", df$`1997`)
df$`1996` <- gsub(",", "", df$`1996`)
df$`1995` <- gsub(",", "", df$`1995`)
df$`1994` <- gsub(",", "", df$`1994`)
```
```{r}
df$`2015` <- as.numeric(df$`2015`)
df$`2014` <- as.numeric(df$`2014`)
df$`2013` <- as.numeric(df$`2013`)
df$`2012` <- as.numeric(df$`2012`)
df$`2011` <- as.numeric(df$`2011`)
df$`2010` <- as.numeric(df$`2010`)
df$`2009` <- as.numeric(df$`2009`)
df$`2008` <- as.numeric(df$`2008`)
df$`2007` <- as.numeric(df$`2007`)
df$`2006` <- as.numeric(df$`2006`)
df$`2005` <- as.numeric(df$`2005`)
df$`2004` <- as.numeric(df$`2004`)
df$`2003` <- as.numeric(df$`2003`)
df$`2002` <- as.numeric(df$`2002`)
df$`2001` <- as.numeric(df$`2001`)
df$`2000` <- as.numeric(df$`2000`)
df$`1999` <- as.numeric(df$`1999`)
df$`1998` <- as.numeric(df$`1998`)
df$`1997` <- as.numeric(df$`1997`)
df$`1996` <- as.numeric(df$`1996`)
df$`1995` <- as.numeric(df$`1995`)
df$`1994` <- as.numeric(df$`1994`)
```
```{r}
df <- df[complete.cases(df), ]
```
```{r}
df_long <- df %>% gather(Year, Val, c(2:23))
```
```{r}
df_long_total <- df_long[df_long$national=='Total**',]
```
```{r}
df_long_total$national <- NULL
```
## Traffic fatalities in the United States have been trending downwards. Notably, fatalities in 2014(approximately less than 33,000) is far lower than the peak in 2005(more than 43,000).
```{r}
ggplot(aes(x=Year, y=Val), data = df_long_total) + geom_line(size = 2.5, alpha = 0.7, color = "mediumseagreen", group=1) +
geom_point(size = 0.5) +
ggtitle('Total Number of Accidents and Fatalities in the US 1994 - 2015') +
ylab('count') +
xlab('Year') +
theme_economist_white()
```
## The above figure did not take into account the ever-increasing number of cars on the road. [Americans are driving more than ever before](http://www.npr.org/sections/thetwo-way/2017/02/21/516512439/record-number-of-miles-driven-in-u-s-last-year).
```{r}
df_long_travel <- df_long[df_long$national=='Vehicle Miles Traveled (Billions)',]
```
```{r}
ggplot(aes(x=Year, y=Val), data = df_long_travel) + geom_line(size = 2.5, alpha = 0.7, color = "mediumseagreen", group=1) +
geom_point(size = 0.5) +
ggtitle('Total Vehicle Miles Traveled 1994 - 2015') +
ylab('Billion Miles') +
xlab('Year') +
theme_economist_white()
```
```{r}
state = read.csv("state.csv")
state <- state[-1, ]
state$`2015` <- state$X2015
state$`2014` <- state$X2014
state$X2015 <- NULL
state$X2014 <- NULL
```
## 2015 Traffic Fatalities by STATE and Percent Change from 2014
### Texas led the nation with the most traffic fatalities in both 2014 and 2015.
### The states that have the fewest traffic fatalities are also among those have the fewest residents, including the District of Columbia, followed by Rhode Island and Vermont.
```{r}
state <- state[c('State', 2015, 2014, 'Percent.Change')]
newdata <- state[order(-state$`2015`),]
newdata
```
```{r}
kill_1994 <- read.csv('kill_1994.csv')
kill_1995 <- read.csv('kill_1995.csv')
kill_1996 <- read.csv('kill_1996.csv')
kill_1997 <- read.csv('kill_1997.csv')
kill_1998 <- read.csv('kill_1998.csv')
kill_1999 <- read.csv('kill_1999.csv')
kill_2000 <- read.csv('kill_2000.csv')
kill_2001 <- read.csv('kill_2001.csv')
kill_2002 <- read.csv('kill_2002.csv')
kill_2003 <- read.csv('kill_2003.csv')
kill_2004 <- read.csv('kill_2004.csv')
kill_2005 <- read.csv('kill_2005.csv')
kill_2006 <- read.csv('kill_2006.csv')
kill_2007 <- read.csv('kill_2007.csv')
kill_2008 <- read.csv('kill_2008.csv')
kill_2009 <- read.csv('kill_2009.csv')
kill_2010 <- read.csv('kill_2010.csv')
kill_2011 <- read.csv('kill_2011.csv')
kill_2012 <- read.csv('kill_2012.csv')
kill_2013 <- read.csv('kill_2013.csv')
kill_2014 <- read.csv('kill_2014.csv')
kill_2015 <- read.csv('kill_2015.csv')
```
```{r}
kill_full <- rbind(kill_1994, kill_1995, kill_1996, kill_1997, kill_1998, kill_1999, kill_2000, kill_2001, kill_2002, kill_2003, kill_2004, kill_2005, kill_2006, kill_2007, kill_2008, kill_2009, kill_2010, kill_2011, kill_2012, kill_2013, kill_2014, kill_2015)
```
```{r}
kill_full <- kill_full[!grepl("Total", kill_full$killed),]
kill_full <- kill_full[!grepl("Unknown", kill_full$killed),]
```
## Nationwide, motor vehicle crash fatalities were higher for males than females every year, more than double.
```{r}
ggplot(aes(x = year, y=count, fill=killed), data=kill_full) +
geom_bar(stat = 'identity', position = position_dodge()) +
xlab('Year') +
ylab('Killed') +
ggtitle('Number of Persons Killed in Traffic Accidents by Gender 1994 - 2015') + theme_economist_white()
```
```{r}
age_1994 <- read.csv('age_1994.csv')
age_1995 <- read.csv('age_1995.csv')
age_1996 <- read.csv('age_1996.csv')
age_1997 <- read.csv('age_1997.csv')
age_1998 <- read.csv('age_1998.csv')
age_1999 <- read.csv('age_1999.csv')
age_2000 <- read.csv('age_2000.csv')
age_2001 <- read.csv('age_2001.csv')
age_2002 <- read.csv('age_2002.csv')
age_2003 <- read.csv('age_2003.csv')
age_2004 <- read.csv('age_2004.csv')
age_2005 <- read.csv('age_2005.csv')
age_2006 <- read.csv('age_2006.csv')
age_2007 <- read.csv('age_2007.csv')
age_2008 <- read.csv('age_2008.csv')
age_2009 <- read.csv('age_2009.csv')
age_2010 <- read.csv('age_2010.csv')
age_2011 <- read.csv('age_2011.csv')
age_2012 <- read.csv('age_2012.csv')
age_2013 <- read.csv('age_2013.csv')
age_2014 <- read.csv('age_2014.csv')
age_2015 <- read.csv('age_2015.csv')
```
```{r}
age_full <- rbind(age_1994, age_1995, age_1996, age_1997, age_1998, age_1999, age_2000, age_2001, age_2002, age_2003, age_2004, age_2005, age_2006, age_2007, age_2008, age_2009, age_2010, age_2011, age_2012, age_2013, age_2014, age_2015)
```
## The age group of 25 to 34 had the highest number of fatalities.
```{r}
age_full$age <- ordered(age_full$age, levels = c('< 5', '5 -- 9', '10 -- 15', '16 -- 20', '21 -- 24', '25 -- 34', '35 -- 44', '45 -- 54', '55 -- 64', '65 -- 74', '> 74'))
ggplot(aes(x = age, y=count), data =age_full) + geom_bar(stat = 'identity') +
xlab('Age') +
ylab('Number of Killed') +
ggtitle('Fatalities Distribution by Age Group 1994 - 2015') + theme_economist_white()
```
## from 2005 to 2015, fatalities increased only in two age groups; 55 to 64 and 65 to 74. Age group in 16 to 20 and 35 to 44 had the highest decrease in fatalities.
```{r}
ggplot(age_full, aes(x = year, y = count, colour = age)) +
geom_line() +
geom_point() +
facet_wrap(~age) + xlab('Year') +
ggtitle('Traffic Fatalities by Age 1994 - 2015') +
theme(legend.position="none")
```
```{r}
time_1994 <- read.csv('time_1994.csv')
time_1995 <- read.csv('time_1995.csv')
time_1996 <- read.csv('time_1996.csv')
time_1997 <- read.csv('time_1997.csv')
time_1998 <- read.csv('time_1998.csv')
time_1999 <- read.csv('time_1999.csv')
time_2000 <- read.csv('time_2000.csv')
time_2001 <- read.csv('time_2001.csv')
time_2002 <- read.csv('time_2002.csv')
time_2003 <- read.csv('time_2003.csv')
time_2004 <- read.csv('time_2004.csv')
time_2005 <- read.csv('time_2005.csv')
time_2006 <- read.csv('time_2006.csv')
time_2007 <- read.csv('time_2007.csv')
time_2008 <- read.csv('time_2008.csv')
time_2009 <- read.csv('time_2009.csv')
time_2010 <- read.csv('time_2010.csv')
time_2011 <- read.csv('time_2011.csv')
time_2012 <- read.csv('time_2012.csv')
time_2013 <- read.csv('time_2013.csv')
time_2014 <- read.csv('time_2014.csv')
time_2015 <- read.csv('time_2015.csv')
```
```{r}
time_full <- rbind(time_1994, time_1995, time_1996, time_1997, time_1998, time_1999, time_2000, time_2001, time_2002, time_2003, time_2004, time_2005, time_2006, time_2007, time_2008, time_2009, time_2010, time_2011, time_2012, time_2013, time_2014, time_2015)
```
```{r}
mdata <- melt(time_full, id='hours')
```
```{r}
hour_group <- group_by(mdata, hours, variable)
```
```{r}
hour_group$value <- as.numeric(as.factor(hour_group$value))
```
```{r}
kill_by_hour_group <- summarise(hour_group,
sum_hour = sum(value))
```
From this treemap, we see 3pm to 5:59pm and 6pm to 8:59pm had the most fatalities. Let's dive it deeper.
```{r}
treemap(kill_by_hour_group, index=c("hours","variable"), vSize="sum_hour", type="index", fontsize.labels=c(15,12), title='Fatalities by time of the day', fontcolor.labels=c("white","orange"), fontface.labels=c(2,1), bg.labels=c("transparent"), align.labels=list(
c("center", "center"), c("right", "bottom")), overlap.labels=0.5, inflate.labels=F,
)
```
The most accidents occured at Midnight to 2:59am on Saturdays and Sundays, let's dive even deeper to find out why. its the time people leave the bars. How many time do we still have to say, don't drink and drive?
```{r}
ggplot(aes(x = variable, y = sum_hour, fill = hours), data = kill_by_hour_group) +
geom_bar(stat = 'identity', position = position_dodge()) +
xlab('Hours') +
ylab('Total Fatalities') +
ggtitle('Fatalities Distribution by Time of the Day and Day of the week 1994-2015') + theme_economist_white()
```
```{r}
time_full_group <- group_by(time_full, hours)
```
```{r}
time_full_by_group <- summarise(time_full_group,
Sun = sum(Sunday),
Mon = sum(Monday),
Tue = sum(Tuesday),
Wed = sum(Wednesday),
Thu = sum(Thursday),
Fri = sum(Friday),
Sat = sum(Saturday))
```
```{r}
al_1994 <- read.csv('al_1994.csv')
al_1995 <- read.csv('al_1995.csv')
al_1996 <- read.csv('al_1996.csv')
al_1997 <- read.csv('al_1997.csv')
al_1998 <- read.csv('al_1998.csv')
al_1999 <- read.csv('al_1999.csv')
al_2000 <- read.csv('al_2000.csv')
al_2001 <- read.csv('al_2001.csv')
al_2002 <- read.csv('al_2002.csv')
al_2003 <- read.csv('al_2003.csv')
al_2004 <- read.csv('al_2004.csv')
al_2005 <- read.csv('al_2005.csv')
al_2006 <- read.csv('al_2006.csv')
al_2007 <- read.csv('al_2007.csv')
al_2008 <- read.csv('al_2008.csv')
al_2009 <- read.csv('al_2009.csv')
al_2010 <- read.csv('al_2010.csv')
al_2011 <- read.csv('al_2011.csv')
al_2012 <- read.csv('al_2012.csv')
al_2013 <- read.csv('al_2013.csv')
al_2014 <- read.csv('al_2014.csv')
al_2015 <- read.csv('al_2015.csv')
```
```{r}
al_all <- rbind(al_1994, al_1995, al_1996, al_1997, al_1998, al_1999, al_2000, al_2001, al_2002, al_2003, al_2004, al_2005, al_2006, al_2007, al_2008, al_2009, al_2010, al_2011, al_2012, al_2013, al_2014, al_2015)
```
The percentage of alcohol-impaired driving fatalities is actually flat for the past over 10 years.
```{r}
al_all_by_bac <- al_all %>%
group_by(bac, year) %>%
summarize(n = n(), mean = mean(pct.of.killed))
```
```{r}
ggplot(aes(x = year, y = mean, color = bac), data = al_all_by_bac) +
geom_jitter(alpha = 0.05) +
geom_smooth(method = 'loess') +
xlab('Year') +
ylab('Percentage of Killed') +
ggtitle('Fatalities and Blood Alcohol Concentration of Drivers 1994-2015') + theme_economist_white()
```
```{r}
pair_1994 <- read.csv('pair_1994.csv')
pair_1995 <- read.csv('pair_1995.csv')
pair_1996 <- read.csv('pair_1996.csv')
pair_1997 <- read.csv('pair_1997.csv')
pair_1998 <- read.csv('pair_1998.csv')
pair_1999 <- read.csv('pair_1999.csv')
pair_2000 <- read.csv('pair_2000.csv')
pair_2001 <- read.csv('pair_2001.csv')
pair_2002 <- read.csv('pair_2002.csv')
pair_2003 <- read.csv('pair_2003.csv')
pair_2004 <- read.csv('pair_2004.csv')
pair_2005 <- read.csv('pair_2005.csv')
pair_2006 <- read.csv('pair_2006.csv')
pair_2007 <- read.csv('pair_2007.csv')
pair_2008 <- read.csv('pair_2008.csv')
pair_2009 <- read.csv('pair_2009.csv')
pair_2010 <- read.csv('pair_2010.csv')
pair_2011 <- read.csv('pair_2011.csv')
pair_2012 <- read.csv('pair_2012.csv')
pair_2013 <- read.csv('pair_2013.csv')
pair_2014 <- read.csv('pair_2014.csv')
pair_2015 <- read.csv('pair_2015.csv')
```
```{r}
pair_all <- rbind(pair_1994, pair_1995, pair_1996, pair_1997, pair_1998, pair_1999, pair_2000, pair_2001, pair_2002, pair_2003, pair_2004, pair_2005, pair_2006, pair_2007, pair_2008, pair_2009, pair_2010, pair_2011, pair_2012, pair_2013, pair_2014, pair_2015)
```
Midnight to 2:59am is the time people leave the bars. How many time do we still have to say, don't drink and drive?
```{r}
ggplot(aes(x = year, y = count, fill = hour), data = pair_all) +
geom_bar(stat = 'identity', position = position_dodge()) +
xlab('Year') +
ylab('Number of Fatalities') +
ggtitle('Fatal Crashes caused by Alcohol-Impaired Driving, by Time of Day 1994-2015') + theme_economist_white()
```