-
Notifications
You must be signed in to change notification settings - Fork 0
/
diffuser.m
196 lines (172 loc) · 5.67 KB
/
diffuser.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
function velocity = diffuser(params,bc,rhs,velocity)
Nx = velocity.size(1);
Ny = velocity.size(2);
dx = params.dx;
nu = params.nu;
velocity_bc = EdgeData(Nx,Ny);
velocity_bc = apply_bc(bc,velocity_bc);
%% For X-direction (U-velocity)
A = zeros(Nx-1,Nx-1);
for j = 2:Ny+1
for i = 2:Nx
A(i-1,i-1) = 2*nu/dx^2; % Center
if i == 2
A(i,i-1) = -nu/dx^2; % East
elseif i == Nx
A(i-2,i-1) = -nu/dx^2; % West
else
A(i,i-1) = -nu/dx^2 ; % East
A(i-2,i-1) = -nu/dx^2; % West
end
end
% Now constructing the AX=B problem.
rhs.x(2,j) = rhs.x(2,j) + (nu/dx^2) * velocity_bc.x(1,j);
rhs.x(Nx,j) = rhs.x(Nx,j) + (nu/dx^2) * velocity_bc.x(Nx+1,j);
B = rhs.x(2:Nx,j);
a = zeros(length(A)-1,1);
b = zeros(length(A),1);
c = zeros(length(A)-1,1);
for i = 1:length(A)
if i == 1
b(i,1) = A(i,i);
c(i,1) = A(i,i+1);
elseif i == length(A)
a(i-1,1) = A(i,i-1);
b(i,1) = A(i,i);
else
a(i-1,1) = A(i,i-1);
b(i,1) = A(i,i);
c(i,1) = A(i,i+1);
end
end
velocity.x(2:Nx,j) = trisolve(a,b,c,B,'reg');
end
%% For X-direction (V-velocity)
% This is the off-direction one. So the diagonal terms will have to be
% modified.
A = zeros(Nx,Nx);
for j = 2:Ny
for i = 2:Nx+1
A(i-1,i-1) = 2*nu/dx^2; % F(East - West) + D(East-West)
if i == 2
A(i,i-1) = -nu/dx^2; % east face
A(i-1,i-1) = A(i-1,i-1) + nu/dx^2; % Modified term
elseif i == Nx+1
A(i-2,i-1) = -nu/dx^2; % West
A(i-1,i-1) = A(i-1,i-1) + nu/dx^2; % Modified term
else
A(i,i-1) = -nu/dx^2; % East
A(i-2,i-1) = -nu/dx^2; % West
end
end
% Now constructing the AX=B problem.
rhs.y(2,j) = rhs.y(2,j) + (nu/dx^2) * velocity_bc.y(1,j);
rhs.y(Nx+1,j) = rhs.y(Nx+1,j) + (nu/dx^2) * velocity_bc.y(Nx+2,j);
B = rhs.y(2:Nx+1,j);
a = zeros(length(A)-1,1);
b = zeros(length(A),1);
c = zeros(length(A)-1,1);
for i = 1:length(A)
if i == 1
b(i,1) = A(i,i);
c(i,1) = A(i,i+1);
elseif i == length(A)
a(i-1,1) = A(i,i-1);
b(i,1) = A(i,i);
else
a(i-1,1) = A(i,i-1);
b(i,1) = A(i,i);
c(i,1) = A(i,i+1);
end
end
velocity.y(2:Nx+1,j) = trisolve(a,b,c,B,'reg');
end
%% Round 2 (X & Y are interchanged and transposed)
rhs.x = velocity.y';
rhs.y = velocity.x';
temp = velocity;
velocity.x = temp.y';
velocity.y = temp.x';
temp = velocity_bc;
velocity_bc.x = temp.y';
velocity_bc.y = temp.x';
%% For Y-direction (V-velocity)
A = zeros(Ny-1,Ny-1);
for j = 2:Nx+1
for i = 2:Ny
A(i-1,i-1) = 2*nu/dx^2; % Middle
if i == 2
A(i,i-1) = -nu/dx^2; % East
elseif i == Ny
A(i-2,i-1) = -nu/dx^2; % West
else
A(i,i-1) = -nu/dx^2; % East
A(i-2,i-1) = -nu/dx^2; % West
end
end
rhs.x(2,j) = rhs.x(2,j) + (nu/dx^2) * velocity_bc.x(1,j);
rhs.x(Ny,j) = rhs.x(Ny,j) + (nu/dx^2) * velocity_bc.x(Ny+1,j);
B = rhs.x(2:Ny,j);
a = zeros(length(A)-1,1);
b = zeros(length(A),1);
c = zeros(length(A)-1,1);
for i = 1:length(A)
if i == 1
b(i,1) = A(i,i);
c(i,1) = A(i,i+1);
elseif i == length(A)
a(i-1,1) = A(i,i-1);
b(i,1) = A(i,i);
else
a(i-1,1) = A(i,i-1);
b(i,1) = A(i,i);
c(i,1) = A(i,i+1);
end
end
velocity.x(2:Ny,j) = trisolve(a,b,c,B,'reg');
end
%% For Y-direction (U-velocity)
% This is the off-direction one. So the diagonal terms will have to be
% modified
A = zeros(Ny,Ny);
for j = 2:Nx
for i = 2:Ny+1
A(i-1,i-1) = 2*nu/dx^2; % Middle
if i == 2
A(i,i-1) = -nu/dx^2; % East
A(i-1,i-1) = A(i-1,i-1) + nu/dx^2; % Modified Term
elseif i == Nx+1
A(i-2,i-1) = -nu/dx^2; % West
A(i-1,i-1) = A(i-1,i-1) + nu/dx^2; % Modified Term
else
A(i,i-1) = -nu/dx^2; % East
A(i-2,i-1) = -nu/dx^2; % West
end
end
rhs.y(2,j) = rhs.y(2,j) + (nu/dx^2) * velocity_bc.y(1,j);
rhs.y(Ny+1,j) = rhs.y(Ny+1) + (nu/dx^2) * velocity_bc.y(Ny+2,j);
B = rhs.y(2:Ny+1,j);
a = zeros(length(A)-1,1);
b = zeros(length(A),1);
c = zeros(length(A)-1,1);
for i = 1:length(A)
if i == 1
b(i,1) = A(i,i);
c(i,1) = A(i,i+1);
elseif i == length(A)
a(i-1,1) = A(i,i-1);
b(i,1) = A(i,i);
else
a(i-1,1) = A(i,i-1);
b(i,1) = A(i,i);
c(i,1) = A(i,i+1);
end
end
velocity.y(2:Ny+1,j) = trisolve(a,b,c,B,'reg');
end
%% Undoing the interchange and transpose
velocity_temp = velocity;
velocity.x = velocity_temp.y';
velocity.y = velocity_temp.x';
velocity = apply_bc(bc,velocity);
end