-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproblem_21.rb
45 lines (34 loc) · 1.17 KB
/
problem_21.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n).
# If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable pair and each of a and b are called amicable numbers.
# For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
# Evaluate the sum of all the amicable numbers under 10000.
require 'prime'
require 'pry'
NUMBERS = {}
AMICABLE = []
def proper_divisors_of(number)
primes, powers = number.prime_division.transpose
exponents = powers.map{|i| (0..i).to_a}
divisors = exponents.shift.product(*exponents).map do |powers|
primes.zip(powers).map{|prime, power| prime ** power}.inject(:*)
end
sorted = divisors.sort
sorted.pop
sorted
end
def sum_of(array)
array.inject(:+)
end
(2..10000).each do |number|
array = proper_divisors_of(number)
NUMBERS[number] = sum_of(array)
end
NUMBERS.each do |number, sum|
if number != sum
if NUMBERS[number] == sum && NUMBERS[sum] == number
AMICABLE << number
AMICABLE << sum
end
end
end
p AMICABLE.uniq.inject(:+)