|
| 1 | +--- |
| 2 | +title: "Untitled" |
| 3 | +output: html_document |
| 4 | +--- |
| 5 | + |
| 6 | +```{r setup, include=FALSE} |
| 7 | +library(GenomicRanges) |
| 8 | +library(data.table) |
| 9 | +
|
| 10 | +knitr::opts_chunk$set(echo = TRUE) |
| 11 | +
|
| 12 | +codex_dir="/Users/javrodher/Work/biodata/LOLA/nm/t1/resources/regions/LOLACore/hg38/codex/regions/" |
| 13 | +encode_dir="/Users/javrodher/Work/biodata/LOLA/nm/t1/resources/regions/LOLACore/hg38/encode_tfbs/regions/" |
| 14 | +
|
| 15 | +outdir="/Users/javrodher/Work/RStudio-PRJs/TCGA_PanCan/results/" |
| 16 | +
|
| 17 | +``` |
| 18 | + |
| 19 | +```{r} |
| 20 | +f_codex=list.files(codex_dir,pattern = "CTCF") |
| 21 | +f_encode=list.files(encode_dir,pattern = "Ctcf") |
| 22 | +index_codex_file="/Users/javrodher/Work/biodata/LOLA/nm/t1/resources/regions/LOLACore/hg38/codex/index.txt" |
| 23 | +index_encode_file="/Users/javrodher/Work/biodata/LOLA/nm/t1/resources/regions/LOLACore/hg38/encode_tfbs/index.txt" |
| 24 | +
|
| 25 | +index_codex=read.delim(index_codex_file) |
| 26 | +index_encode=read.delim(index_encode_file) |
| 27 | +
|
| 28 | +index_codex_ctcf = index_codex[index_codex$antibody=="CTCF",] |
| 29 | +index_encode_ctcf = index_encode[index_encode$antibody=="CTCF",] |
| 30 | +
|
| 31 | +index_codex_ctcf$mappingGenome |
| 32 | +index_encode_ctcf=index_encode_ctcf[index_encode_ctcf$treatment=="None",] |
| 33 | +table(index_encode_ctcf$cellType) |
| 34 | +
|
| 35 | +fnames=index_encode_ctcf$filename |
| 36 | +
|
| 37 | +X=data.frame(V1=NA,V2=NA,V3=NA,V4=NA,stringsAsFactors = F) |
| 38 | +for (fname in fnames){ |
| 39 | + #fname=fnames[1] |
| 40 | + |
| 41 | + print(fname) |
| 42 | + x = read.delim(paste0(encode_dir,"/",fname),header = F) |
| 43 | + x$V4=fname |
| 44 | + X=rbind(X,x) |
| 45 | +} |
| 46 | +
|
| 47 | +X=X[-1,] |
| 48 | +table(X$V4) |
| 49 | +
|
| 50 | +write.table(X[,1:3],paste0(outdir,"/","ctcf_encode_LOLA_hg38.bed"),quote = F,sep="\t",col.names = F,row.names = F) |
| 51 | +``` |
| 52 | + |
| 53 | +```{r} |
| 54 | +# sort -k1,1 -k2,2n ctcf_encode_LOLA_hg38.bed > ctcf_encode_sorted.bed |
| 55 | +# bedtools merge -i ctcf_encode_sorted.bed > ctcf_encode_merged.bed |
| 56 | +# wc -l ctcf_encode_merged.bed |
| 57 | +``` |
| 58 | + |
| 59 | +```{r} |
| 60 | +inpdir="/Users/javrodher/Work/RStudio-PRJs/TCGA_PanCan/data/maxATAC/CTCF/" |
| 61 | +top_list=c("all",100000,90000,80000,70000,60000,50000,40000,30000,20000,10000) |
| 62 | +
|
| 63 | +ctcf_peaks = read.delim(paste0(outdir,"/ctcf_encode_merged.bed"),header = F) |
| 64 | +names(ctcf_peaks)=c("chr","start","end") |
| 65 | +#quantile(ctcf_peaks$end-ctcf_peaks$start) |
| 66 | +samples=list.dirs(inpdir,full.names = F,recursive = F) |
| 67 | +
|
| 68 | +X=data.frame(V1=NA,V2=NA,V3=NA,V4=NA,V5=NA,V6=NA,stringsAsFactors = F) |
| 69 | +for (sample in samples){ |
| 70 | + #sample=samples[1] |
| 71 | + print(sample) |
| 72 | + x=read.delim(paste0(inpdir,"/",sample,"/maxatac_predict_32bp.bed"),header = F) |
| 73 | + x=x[order(x$V4,decreasing = T),] |
| 74 | + x$V5=sample |
| 75 | + x$V6=1:nrow(x) |
| 76 | + X=rbind(X,x) |
| 77 | +} |
| 78 | +
|
| 79 | +fx1 = function(sample,inpdir){ |
| 80 | + #sample=samples[1] |
| 81 | + #print(sample) |
| 82 | + x=read.delim(paste0(inpdir,"/",sample,"/maxatac_predict_32bp.bed"),header = F) |
| 83 | + x=x[order(x$V4,decreasing = T),] |
| 84 | + x$V5=sample |
| 85 | + x$V6=1:nrow(x) |
| 86 | + return(x) |
| 87 | +} |
| 88 | +
|
| 89 | +res = parallel::mclapply(samples,fx1,inpdir=inpdir,mc.cores = 5) |
| 90 | +predicted_ctcf=do.call(rbind.data.frame,res) |
| 91 | +names(predicted_ctcf)=c("chr","start","end","score","sample","rank") |
| 92 | +table(predicted_ctcf$sample) |
| 93 | +predicted_ctcf$celltype=substring(predicted_ctcf$sample,1,4) |
| 94 | +
|
| 95 | +#table(predicted_ctcf$sample) |
| 96 | +#fwrite(predicted_ctcf,paste0(outdir,"/","predicted_ctcf_allSamples.csv"),row.names=F) |
| 97 | +predicted_ctcf = fread(paste0(outdir,"/","predicted_ctcf_allSamples.csv")) |
| 98 | +
|
| 99 | +ctcf_peaks_lola.gr=makeGRangesFromDataFrame(ctcf_peaks,keep.extra.columns = T) |
| 100 | +
|
| 101 | +DF=data.frame(sample=NA,tps=NA,fps=NA,n_peaks=NA,frac_tps=NA,top=NA,stringsAsFactors = F) |
| 102 | +for (top in top_list){ |
| 103 | + #top="all" |
| 104 | + print(top) |
| 105 | + |
| 106 | + if(top != "all") { |
| 107 | + predicted=predicted_ctcf[predicted_ctcf$rank %in% 1:top,] |
| 108 | + } else {predicted = predicted_ctcf } |
| 109 | + predicted.gr=makeGRangesFromDataFrame(predicted,keep.extra.columns = T) |
| 110 | + ovl=as.data.frame(findOverlaps(predicted.gr,ctcf_peaks_lola.gr)) |
| 111 | + predicted$overlap_lola=F |
| 112 | + predicted$overlap_lola[unique(ovl$queryHits)]=T |
| 113 | + #table(predicted$overlap_lola) |
| 114 | +
|
| 115 | + tps = as.data.frame(table(predicted$sample[predicted$overlap_lola==T])) |
| 116 | + fps = as.data.frame(table(predicted$sample[predicted$overlap_lola==F])) |
| 117 | + df=data.frame(sample=tps$Var1,tps=tps$Freq,fps=fps$Freq,stringsAsFactors = F) |
| 118 | + df$n_peaks=df$tps+df$fps |
| 119 | + df$frac_tps=df$tps/df$n_peaks |
| 120 | + df$top=top |
| 121 | + DF=rbind(DF,df) |
| 122 | +} |
| 123 | + DF=DF[-1,] |
| 124 | + DF$celltype=substring(DF$sample, 1, 4) |
| 125 | + table(DF$celltype) |
| 126 | + fwrite(DF,paste0(outdir,"/","predicted_ctcf_stats.csv"),row.names=F) |
| 127 | + DF$top=as.factor(DF$top) |
| 128 | + library(gridGraphics) |
| 129 | + |
| 130 | + DF$top=factor(DF$top,levels=c("all",seq(100000,10000,-10000))) |
| 131 | +
|
| 132 | + ggplot(DF,aes(x=frac_tps))+ |
| 133 | + geom_histogram()+ |
| 134 | + facet_wrap(~top)+ |
| 135 | + theme_bw()+ |
| 136 | + geom_vline(xintercept = 0.4,color="red") |
| 137 | +``` |
| 138 | + |
| 139 | +```{r} |
| 140 | +ggplot(predicted_ctcf,aes(x=sample,y=score))+ |
| 141 | + geom_boxplot()+ |
| 142 | + facet_wrap(~celltype,scales = "free_x",ncol = 1)+ |
| 143 | + theme(axis.text.x = element_blank())+ |
| 144 | + ylab("Peak score")+ |
| 145 | + xlab("Samples") |
| 146 | +``` |
| 147 | + |
| 148 | + |
| 149 | +```{r} |
| 150 | +df_score = predicted_ctcf %>% group_by(sample) %>% summarise(median_score=median(score)) |
| 151 | +df_score$celltype=substring(df_score$sample, 1, 4) |
| 152 | +
|
| 153 | +ggplot(df_score,aes(x=sample,y=median_score))+ |
| 154 | + geom_col()+ |
| 155 | + facet_wrap(~celltype,scales = "free_x")+ |
| 156 | + theme_bw()+ |
| 157 | + theme(axis.text.x = element_blank())+ |
| 158 | + ylab("Peak score (Median)")+ |
| 159 | + xlab("Samples") |
| 160 | +
|
| 161 | +``` |
| 162 | + |
| 163 | +```{r} |
| 164 | + ggplot(DF,aes(x=top,y=frac_tps))+ |
| 165 | + geom_boxplot()+ |
| 166 | + theme_bw() |
| 167 | +``` |
| 168 | + |
| 169 | +```{r} |
| 170 | + ggplot(DF,aes(x=top,y=frac_tps))+ |
| 171 | + geom_boxplot()+ |
| 172 | + facet_wrap(~celltype)+ |
| 173 | + theme_bw()+ |
| 174 | + theme(axis.text.x = element_text(angle=90, hjust=1))+ |
| 175 | + ylab("True positives (fraction)")+ |
| 176 | + xlab("Peak number") |
| 177 | +
|
| 178 | +``` |
| 179 | + |
| 180 | +```{r} |
| 181 | +DF[DF$top=="all",] %>% group_by(celltype) %>% summarise(n=n()) |
| 182 | +``` |
| 183 | + |
| 184 | +```{r} |
| 185 | +ggplot(DF[DF$top=="all",],aes(x=celltype,y=n_peaks))+ |
| 186 | + geom_boxplot() |
| 187 | +
|
| 188 | +ggplot(DF[DF$top=="all",],aes(x=sample,y=n_peaks))+ |
| 189 | + geom_col()+ |
| 190 | + facet_wrap(~celltype,scales = "free_x")+ |
| 191 | + theme_bw()+ |
| 192 | + theme(axis.text.x = element_blank())+ |
| 193 | + ylab("Predicted CTCF peaks (count)")+ |
| 194 | + xlab("Samples") |
| 195 | +``` |
| 196 | + |
| 197 | + |
| 198 | + |
| 199 | + |
| 200 | + |
| 201 | +```{r} |
| 202 | +# number of predicted peaks per cancer type |
| 203 | +# number of tps per cancer type per top selection |
| 204 | +# scores of predicted peaks per cancer type |
| 205 | +``` |
| 206 | + |
| 207 | +```{r} |
| 208 | +x=as.data.frame(table(predicted_ctcf$sample)) |
| 209 | +quantile(x$Freq) |
| 210 | +hist(x$Freq,breaks = 50) |
| 211 | +quantile(predicted_ctcf$score[!is.na(predicted_ctcf$score)],na.rm=F) |
| 212 | +``` |
| 213 | + |
| 214 | +```{r} |
| 215 | +ggplot(predicted_ctcf[predicted_ctcf$sample %in% samples[1:20],],aes(x=score))+ |
| 216 | + geom_histogram()+ |
| 217 | + facet_wrap(~sample) |
| 218 | +``` |
| 219 | + |
0 commit comments