Skip to content

Latest commit

 

History

History
47 lines (25 loc) · 1.27 KB

palindrome-partitioning-ii.md

File metadata and controls

47 lines (25 loc) · 1.27 KB

Palindrome Partitioning II

描述

Given a string s, partition s such that every substring of the partition is a palindrome.

Return the minimum cuts needed for a palindrome partitioning of s.

For example, given s = "aab",

Return 1 since the palindrome partitioning ["aa","b"] could be produced using 1 cut.

分析

定义状态f(i,j)表示区间[i,j]之间最小的cut数,则状态转移方程为

$$ f(i,j)=\min\left{f(i,k)+f(k+1,j)\right}, i \leq k \leq j, 0 \leq i \leq j<n $$

这是一个二维函数,实际写代码比较麻烦。

所以要转换成一维DP。如果每次,从i往右扫描,每找到一个回文就算一次DP的话,就可以转换为f(i)=区间[i, n-1]之间最小的cut数,n为字符串长度,则状态转移方程为

$$ f(i)=\min\left{f(j+1)+1\right}, i \leq j<n $$

一个问题出现了,就是如何判断[i,j]是否是回文?每次都从i到j比较一遍?太浪费了,这里也是一个DP问题。

定义状态 P[i][j] = true if [i,j]为回文,那么

P[i][j] = str[i] == str[j] && P[i+1][j-1]

代码

{% codesnippet "./code/palindrome-partitioning-ii."+book.suffix, language=book.suffix %}{% endcodesnippet %}

相关题目