Say you have an array for which the i-th element is the price of a given stock on day i
.
Design an algorithm to find the maximum profit. You may complete at most k
transactions.
Note: You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
设两个状态,global[i][j]
表示i天前最多可以进行j次交易的最大利润,local[i][j]
表示i天前最多可以进行j次交易,且在第i天进行了第j次交易的最大利润。状态转移方程如下:
local[i][j] = max(global[i-1][j-1] + max(diff,0), local[i-1][j]+diff)
global[i][j] = max(local[i][j], global[i-1][j])
关于global
的状态转移方程比较简单,不断地和已经计算出的local进行比较,把大的保存在global中。
关于local
的状态转移方程,取下面二者中较大的一个:
- 全局前
i-1
天进行了j-1
次交易,然后然后加上今天的交易产生的利润(如果赚钱就交易,不赚钱就不交易,什么也不发生,利润是0) - 局部前
i-1
天进行了j
次交易,然后加上今天的差价(local[i-1][j]
是第i-1
天卖出的交易,它加上diff后变成第i
天卖出,并不会增加交易次数。无论diff
是正还是负都要加上,否则就不满足local[i][j]
必须在最后一天卖出的条件了)
注意,当k
大于数组的大小时,上述算法将变得低效,此时可以改为不限交易次数的方式解决,即等价于 "Best Time to Buy and Sell Stock II"。
{% if book.java %} {% codesnippet "./code/best-time-to-buy-and-sell-stock-iv-1."+book.suffix, language=book.suffix %}{% endcodesnippet %} {% endif %}