-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathdemo_train.py
56 lines (49 loc) · 2.12 KB
/
demo_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import torch
import matplotlib.pyplot as plt
import numpy as np
from transformers import AdamW
from transformers import BertConfig, get_linear_schedule_with_warmup
from tqdm import tqdm
from model_generator import Generator
from model_discriminator import Discriminator
from model_electra import Electra
from load_data import data_generator
SAVED_DIR = './PLM_checkpoint'
EPOCHS = 100
WARMUP_PROPORTION = 0.1
device = "cuda" if torch.cuda.is_available() else 'cpu'
#generator
gen_config = BertConfig.from_json_file("./bert-base-chinese/config_gen.json")
generator = Generator(config=gen_config)
generator.embeddings.word_embeddings.weight = generator.cls.predictions.decoder.weight
#discriminator
discriminator = Discriminator.from_pretrained('./bert-base-chinese')
#share the embeddings (both the token and positional embeddings) of the generator and discriminator
generator.embeddings = discriminator.bert.embeddings
electra = Electra(generator, discriminator, 1., 50.)
electra.to(device).train()
total_steps = EPOCHS
optimizer = AdamW(electra.parameters(), lr=5e-5)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=int(WARMUP_PROPORTION * total_steps), num_training_steps=total_steps)
loss_vals = []
for epoch in range(EPOCHS):
epoch_loss= []
training_data = data_generator(12, 512, 10, './data/demo_data.csv', 2)
pbar = tqdm(training_data)
pbar.set_description("[Epoch {}]".format(epoch))
for batch in pbar:
original_input_ids = batch['original_input_ids'].to(device)
input_ids = batch['input_ids'].to(device)
labels = batch['labels'].to(device)
attention_mask = batch['attention_mask'].to(device)
electra.zero_grad()
loss = electra(original_input_ids, input_ids, labels, attention_mask)
loss.backward()
torch.nn.utils.clip_grad_norm_(electra.parameters(), 1.0)
epoch_loss.append(loss.item())
optimizer.step()
scheduler.step()
pbar.set_postfix(loss=loss.item())
loss_vals.append(np.mean(epoch_loss))
discriminator.save_pretrained(f'{SAVED_DIR}')
plt.plot(np.linspace(1, EPOCHS, EPOCHS).astype(int), loss_vals)