-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathtrain_eval.py
91 lines (75 loc) · 3.49 KB
/
train_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# -*- coding: utf-8 -*-
import numpy as np
import torch
import matplotlib.pyplot as plt
from transformers import BertTokenizer, BertForMaskedLM
from transformers import AdamW, get_linear_schedule_with_warmup
from load_data import traindataloader, valdataloader
from sklearn import metrics
from tqdm import tqdm
device = "cuda" if torch.cuda.is_available() else 'cpu'
N_EPOCHS = 5
LR = 1e-6
WARMUP_PROPORTION = 0.1
MAX_GRAD_NORM = 1.0
def run():
best_acc_score = 0
tokenizer = BertTokenizer.from_pretrained('./bert-base-chinese')
pos_id = tokenizer.convert_tokens_to_ids('很')
neg_id = tokenizer.convert_tokens_to_ids('不')
mask_idx = 1
model = BertForMaskedLM.from_pretrained('../bert-base-chinese')
for param in model.parameters():
param.requires_grad = True
model.to(device)
total_steps = len(traindataloader) * N_EPOCHS
optimizer = AdamW(model.parameters(), lr=LR)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=int(WARMUP_PROPORTION * total_steps), num_training_steps=total_steps)
loss_vals_train = []
acc_vals_eval = []
for epoch in range(N_EPOCHS):
model.train()
epoch_loss= []
pbar = tqdm(traindataloader)
pbar.set_description("[Train Epoch {}]".format(epoch))
for batch_idx, batch_data in enumerate(pbar):
input_ids = batch_data["input_ids"].to(device)
attention_mask = batch_data["attention_mask"].to(device)
labels = batch_data["labels"].to(device)
model.zero_grad()
outputs = model(input_ids, attention_mask, labels=labels)
loss = outputs[0]#averaged loss
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), MAX_GRAD_NORM)
epoch_loss.append(loss.item())
optimizer.step()
scheduler.step()
loss_vals_train.append(np.mean(epoch_loss))
model.eval()
pbar = tqdm(valdataloader)
pbar.set_description("[Eval Epoch {}]".format(epoch))
predict_all = np.array([], dtype=int)
labels_all = np.array([], dtype=int)
with torch.no_grad():
for batch_idx, batch_data in enumerate(pbar):
input_ids = batch_data["input_ids"].to(device)
attention_mask = batch_data["attention_mask"].to(device)
outputs = model(input_ids, attention_mask)
prediction_scores = outputs[0]
y_pred = prediction_scores[:, mask_idx, [neg_id, pos_id]].argmax(axis=1)
predict_all = np.append(predict_all, y_pred.cpu().numpy())
y_true = (batch_data["labels"][:, mask_idx] == pos_id).long()
labels_all = np.append(labels_all, y_true.cpu().numpy())
acc = metrics.accuracy_score(labels_all, predict_all)
acc_vals_eval.append(acc)
print(f'Epoch:{epoch}, ACC:{acc}')
if acc > best_acc_score:
best_acc_score = acc
model_to_save = model.module if hasattr(model, "module") else model
model_to_save.save_pretrained(f'model.pt')
torch.cuda.empty_cache()
l1, = plt.plot(np.linspace(1, N_EPOCHS, N_EPOCHS).astype(int), loss_vals_train)
l2, = plt.plot(np.linspace(1, N_EPOCHS, N_EPOCHS).astype(int), acc_vals_eval)
plt.legend(handles=[l1,l2],labels=['Train loss','Eval acc'],loc='best')
if __name__ == '__main__':
run()