-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathwavetrend.py
276 lines (219 loc) · 10.3 KB
/
wavetrend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import logging
import numpy as np
import pandas as pd
from technical import qtpylib
from pandas import DataFrame
from datetime import datetime, timezone
from typing import Optional
from functools import reduce
import talib.abstract as ta
import pandas_ta as pta
from freqtrade.strategy import (BooleanParameter, CategoricalParameter, DecimalParameter,
IStrategy, IntParameter, RealParameter, merge_informative_pair)
import freqtrade.vendor.qtpylib.indicators as qtpylib
from freqtrade.persistence import Trade
logger = logging.getLogger(__name__)
class wavetrend(IStrategy):
### Strategy parameters ###
exit_profit_only = True ### No selling at a loss
use_custom_stoploss = True
trailing_stop = True
position_adjustment_enable = True
ignore_roi_if_entry_signal = True
use_exit_signal = True
stoploss = -0.40
startup_candle_count: int = 30
timeframe = '1h'
# DCA Parameters
position_adjustment_enable = True
max_entry_position_adjustment = 2
max_dca_multiplier = 5.5
minimal_roi = {
"12000": 0.10,
"600": 0.15,
"300": 0.20,
"180": 0.30,
"120":0.40,
"60": 0.45,
"0": 0.50
}
### Hyperoptable parameters ###
# entry optizimation
max_epa = CategoricalParameter([-1, 0, 1, 3, 5, 10], default=2, space="buy", optimize=True)
# protections
cooldown_lookback = IntParameter(2, 48, default=5, space="protection", optimize=True)
stop_duration = IntParameter(12, 200, default=5, space="protection", optimize=True)
use_stop_protection = BooleanParameter(default=True, space="protection", optimize=True)
# trading
buy_rsi = IntParameter(low=15, high=30, default=25, space='buy', optimize=True, load=True)
sell_rsi = IntParameter(low=50, high=70, default=55, space='sell', optimize=True, load=True)
### entry opt. ###
@property
def max_entry_position_adjustment(self):
return self.max_epa.value
### protections ###
@property
def protections(self):
prot = []
prot.append({
"method": "CooldownPeriod",
"stop_duration_candles": self.cooldown_lookback.value
})
if self.use_stop_protection.value:
prot.append({
"method": "StoplossGuard",
"lookback_period_candles": 24 * 3,
"trade_limit": 4,
"stop_duration_candles": self.stop_duration.value,
"only_per_pair": False
})
return prot
### Dollar Cost Averaging ###
# This is called when placing the initial order (opening trade)
def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
proposed_stake: float, min_stake: Optional[float], max_stake: float,
leverage: float, entry_tag: Optional[str], side: str,
**kwargs) -> float:
# We need to leave most of the funds for possible further DCA orders
# This also applies to fixed stakes
return proposed_stake / self.max_dca_multiplier
def adjust_trade_position(self, trade: Trade, current_time: datetime,
current_rate: float, current_profit: float,
min_stake: Optional[float], max_stake: float,
current_entry_rate: float, current_exit_rate: float,
current_entry_profit: float, current_exit_profit: float,
**kwargs) -> Optional[float]:
"""
Custom trade adjustment logic, returning the stake amount that a trade should be
increased or decreased.
This means extra buy or sell orders with additional fees.
Only called when `position_adjustment_enable` is set to True.
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
When not implemented by a strategy, returns None
:param trade: trade object.
:param current_time: datetime object, containing the current datetime
:param current_rate: Current buy rate.
:param current_profit: Current profit (as ratio), calculated based on current_rate.
:param min_stake: Minimal stake size allowed by exchange (for both entries and exits)
:param max_stake: Maximum stake allowed (either through balance, or by exchange limits).
:param current_entry_rate: Current rate using entry pricing.
:param current_exit_rate: Current rate using exit pricing.
:param current_entry_profit: Current profit using entry pricing.
:param current_exit_profit: Current profit using exit pricing.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return float: Stake amount to adjust your trade,
Positive values to increase position, Negative values to decrease position.
Return None for no action.
"""
if current_profit > 0.10 and trade.nr_of_successful_exits == 0:
# Take half of the profit at +5%
return -(trade.stake_amount / 2)
if current_profit > -0.01 and trade.nr_of_successful_entries == 1:
return None
if current_profit > -0.03 and trade.nr_of_successful_entries == 2:
return None
if current_profit > -0.10 and trade.nr_of_successful_entries == 3:
return None
# Obtain pair dataframe (just to show how to access it)
dataframe, _ = self.dp.get_analyzed_dataframe(trade.pair, self.timeframe)
filled_entries = trade.select_filled_orders(trade.entry_side)
count_of_entries = trade.nr_of_successful_entries
# Allow up to 3 additional increasingly larger buys (4 in total)
# Initial buy is 1x
# If that falls to -5% profit, we buy more,
# If that falls down to -5% again, we buy 1.5x more
# If that falls once again down to -5%, we buy more
# Total stake for this trade would be 1 + 1.5 + 2 + 2.5 = 7x of the initial allowed stake.
# That is why max_dca_multiplier is 7
# Hope you have a deep wallet!
try:
# This returns first order stake size
stake_amount = filled_entries[0].cost
# This then calculates current safety order size
stake_amount = stake_amount * (1 + (count_of_entries * 0.5))
return stake_amount
except Exception as exception:
return None
return None
### Trailing Stop ###
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
current_rate: float, current_profit: float, **kwargs) -> float:
if (current_profit > 0.3):
return 0.05
elif (current_profit > 0.1):
return 0.025
elif (current_profit > 0.06):
return 0.012
return self.stoploss
### NORMAL INDICATORS ###
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# RSI
dataframe['rsi'] = ta.RSI(dataframe)
dataframe['rsi_ma'] = ta.SMA(dataframe['rsi'], timeperiod=10)
# WaveTrend using OHLC4 or HA close - 3/21
ap = (0.25 * (dataframe['high'] + dataframe['low'] + dataframe["close"] + dataframe["open"]))
dataframe['esa'] = ta.EMA(ap, timeperiod = 10)
dataframe['d'] = ta.EMA(abs(ap - dataframe['esa']), timeperiod = 10)
dataframe['wave_ci'] = (ap-dataframe['esa']) / (0.015 * dataframe['d'])
dataframe['wave_t1'] = ta.EMA(dataframe['wave_ci'], timeperiod = 21)
dataframe['wave_t2'] = ta.SMA(dataframe['wave_t1'], timeperiod = 4)
# SMA
dataframe['200_SMA'] = ta.SMA(dataframe["close"], timeperiod = 200)
dataframe['50_SMA'] = ta.SMA(dataframe["close"], timeperiod = 50)
return dataframe
### ENTRY CONDITIONS ###
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
df.loc[
(
(df['wave_t1'] > df['wave_t1'].shift(1)) & # Guard: Wave 1 is raising
(qtpylib.crossed_above(df['wave_t1'], df['wave_t2'])) &
(df['volume'] > 0) # Make sure Volume is not 0
),
['enter_long', 'enter_tag']] = (1, 'WT')
df.loc[
(
# Signal: RSI crosses above 30
(df['rsi'] > self.buy_rsi.value) &
(df['rsi'] < 60) &
(qtpylib.crossed_above(df['rsi'], df['rsi_ma'])) &
(df['wave_t1'] > df['wave_t1'].shift(1)) & # Guard: Wave 1 is raising
(qtpylib.crossed_above(df['wave_t1'], df['wave_t2'])) &
(df['volume'] > 0) # Make sure Volume is not 0
),
['enter_long', 'enter_tag']] = (1, 'WT/RSI')
df.loc[
(
# Signal: RSI crosses above 30
(df['rsi'] > self.buy_rsi.value) &
(df['rsi'] < 55) &
(qtpylib.crossed_above(df['rsi'], df['rsi_ma'])) &
(df['volume'] > 0) # Make sure Volume is not 0
),
['enter_long', 'enter_tag']] = (1, 'RSI-XO')
return df
### EXIT CONDITIONS ###
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
df.loc[
(
# Signal: RSI crosses above 30
(df['rsi'] > self.sell_rsi.value) &
(df['wave_t1'] < df['wave_t1'].shift(1)) & # Guard: Wave 1 is raising
(qtpylib.crossed_above(df['wave_t2'], df['wave_t1'])) &
(df['volume'] > 0) # Make sure Volume is not 0
),
['exit_long', 'exit_tag']] = (1, 'WT/RSI')
df.loc[
(
(df['rsi'] > self.sell_rsi.value) &
(qtpylib.crossed_above(df['rsi_ma'], df['rsi'])) &
(df['volume'] > 0) # Make sure Volume is not 0
),
['exit_long', 'exit_tag']] = (1, 'RSI-XO')
df.loc[
(
(df['wave_t1'] < df['wave_t1'].shift(1)) & # Guard: Wave 1 is raising
(qtpylib.crossed_above(df['wave_t2'], df['wave_t1'])) &
(df['volume'] > 0) # Make sure Volume is not 0
),
['exit_long', 'exit_tag']] = (1, 'WT')
return df