-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathWTAI.py
612 lines (513 loc) · 26 KB
/
WTAI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
import logging
import numpy as np
import pandas as pd
from technical import qtpylib
from pandas import DataFrame
from datetime import datetime, timezone
from typing import Optional
from functools import reduce
import talib.abstract as ta
import pandas_ta as pta
from freqtrade.strategy import (BooleanParameter, CategoricalParameter, DecimalParameter,
IStrategy, IntParameter, RealParameter, merge_informative_pair)
import freqtrade.vendor.qtpylib.indicators as qtpylib
from freqtrade.persistence import Trade
logger = logging.getLogger(__name__)
class WTAI(IStrategy):
"""
Example of a hybrid FreqAI strat, designed to illustrate how a user may employ
FreqAI to bolster a typical Freqtrade strategy.
Launching this strategy would be:
freqtrade trade --strategy WTAI --freqaimodel CatboostClassifier --config ho.json
To HyperOpt this strategy:
freqtrade hyperopt --hyperopt-loss SharpeHyperOptLoss --strategy WTAI --freqaimodel CatboostClassifier --config ho.json --timerange 20220601-20221201 -e 1000
or the user simply adds this to their config:
"freqai": {
"enabled": true,
"fit_live_predictions_candles": 300,
"purge_old_models": true,
"train_period_days": 15,
"identifier": "unique-id",
"live_retrain_hours": 1.0
"feature_parameters": {
"include_timeframes": [
"15m",
"1h",
"4h"
],
"include_corr_pairlist": [
"BTC/USDT",
"ATOM/USDT",
"ETH/USDT",
"XRP/USDT"
],
"label_period_candles": 20,
"include_shifted_candles": 2,
"DI_threshold": 0.9,
"weight_factor": 0.9,
"principal_component_analysis": false,
"use_SVM_to_remove_outliers": true,
"indicator_periods_candles": [3, 10, 20]
},
"data_split_parameters": {
"test_size": 0,
"random_state": 1
},
"model_training_parameters": {
"n_estimators": 800
}
},
paste this into your config file
"""
### PLOT INDICATORS
plot_config = {
'main_plot': {
'tema': {},
},
'subplots': {
"RSI": {
'rsi': {'color': 'red'},
},
"WAVE":{
'wave_t1': {'color': 'white'},
'wave_t2': {'color': 'blue'}
},
"Up_or_down": {
'&s-up_or_down': {'color': 'green'},
}
}
}
### Strategy parameters ###
exit_profit_only = True ### No selling at a loss
use_custom_stoploss = True
trailing_stop = True
position_adjustment_enable = True
process_only_new_candles = True
ignore_roi_if_entry_signal = True
use_exit_signal = True
stoploss = -0.40
startup_candle_count: int = 30
timeframe = '15m'
# DCA Parameters
position_adjustment_enable = True
max_entry_position_adjustment = 3
max_dca_multiplier = 7
minimal_roi = {
"60": 0.01,
"30": 0.02,
"0": 0.04
}
### Hyperoptable parameters ###
# entry optizimation
max_epa = CategoricalParameter([-1, 0, 1, 3, 5, 10], default=3, space="buy", optimize=True)
# protections
cooldown_lookback = IntParameter(2, 48, default=5, space="protection", optimize=True)
stop_duration = IntParameter(12, 200, default=5, space="protection", optimize=True)
use_stop_protection = BooleanParameter(default=True, space="protection", optimize=True)
# indicators
mfi_length = IntParameter(3,60, default=53, space='buy', optimize=True)
# trading
buy_rsi = IntParameter(low=1, high=50, default=30, space='buy', optimize=True, load=True)
mfi_buy_slope = IntParameter(-30, 30 , default=0, space='buy', optimize=True)
sell_rsi = IntParameter(low=50, high=100, default=70, space='sell', optimize=True, load=True)
mfi_sell_slope = IntParameter(-30, 30 , default=0, space='sell', optimize=True)
### entry opt. ###
@property
def max_entry_position_adjustment(self):
return self.max_epa.value
### protections ###
@property
def protections(self):
prot = []
prot.append({
"method": "CooldownPeriod",
"stop_duration_candles": self.cooldown_lookback.value
})
if self.use_stop_protection.value:
prot.append({
"method": "StoplossGuard",
"lookback_period_candles": 24 * 3,
"trade_limit": 4,
"stop_duration_candles": self.stop_duration.value,
"only_per_pair": False
})
return prot
### Dollar Cost Averaging ###
# This is called when placing the initial order (opening trade)
def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
proposed_stake: float, min_stake: Optional[float], max_stake: float,
leverage: float, entry_tag: Optional[str], side: str,
**kwargs) -> float:
# We need to leave most of the funds for possible further DCA orders
# This also applies to fixed stakes
return proposed_stake / self.max_dca_multiplier
def adjust_trade_position(self, trade: Trade, current_time: datetime,
current_rate: float, current_profit: float,
min_stake: Optional[float], max_stake: float,
current_entry_rate: float, current_exit_rate: float,
current_entry_profit: float, current_exit_profit: float,
**kwargs) -> Optional[float]:
"""
Custom trade adjustment logic, returning the stake amount that a trade should be
increased or decreased.
This means extra buy or sell orders with additional fees.
Only called when `position_adjustment_enable` is set to True.
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
When not implemented by a strategy, returns None
:param trade: trade object.
:param current_time: datetime object, containing the current datetime
:param current_rate: Current buy rate.
:param current_profit: Current profit (as ratio), calculated based on current_rate.
:param min_stake: Minimal stake size allowed by exchange (for both entries and exits)
:param max_stake: Maximum stake allowed (either through balance, or by exchange limits).
:param current_entry_rate: Current rate using entry pricing.
:param current_exit_rate: Current rate using exit pricing.
:param current_entry_profit: Current profit using entry pricing.
:param current_exit_profit: Current profit using exit pricing.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return float: Stake amount to adjust your trade,
Positive values to increase position, Negative values to decrease position.
Return None for no action.
"""
if current_profit > 0.10 and trade.nr_of_successful_exits == 0:
# Take half of the profit at +5%
return -(trade.stake_amount / 2)
if current_profit > -0.02 and trade.nr_of_successful_entries == 1:
return None
if current_profit > -0.05 and trade.nr_of_successful_entries == 2:
return None
if current_profit > -0.075 and trade.nr_of_successful_entries == 3:
return None
# Obtain pair dataframe (just to show how to access it)
dataframe, _ = self.dp.get_analyzed_dataframe(trade.pair, self.timeframe)
filled_entries = trade.select_filled_orders(trade.entry_side)
count_of_entries = trade.nr_of_successful_entries
# Allow up to 3 additional increasingly larger buys (4 in total)
# Initial buy is 1x
# If that falls to -5% profit, we buy more,
# If that falls down to -5% again, we buy 1.5x more
# If that falls once again down to -5%, we buy more
# Total stake for this trade would be 1 + 1.5 + 2 + 2.5 = 7x of the initial allowed stake.
# That is why max_dca_multiplier is 7
# Hope you have a deep wallet!
try:
# This returns first order stake size
stake_amount = filled_entries[0].cost
# This then calculates current safety order size
stake_amount = stake_amount * (1 + (count_of_entries * 0.5))
return stake_amount
except Exception as exception:
return None
return None
### Trailing Stop ###
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
current_rate: float, current_profit: float, **kwargs) -> float:
if (current_profit > 0.3):
return 0.05
elif (current_profit > 0.1):
return 0.025
elif (current_profit > 0.06):
return 0.01
elif (current_profit > 0.04):
return 0.01
elif (current_profit > 0.025):
return 0.005
return self.stoploss
### FREQ AI ###
# FreqAI required function, user can add or remove indicators, but general structure
# must stay the same.
def populate_any_indicators(
self, pair, df, tf, informative=None, set_generalized_indicators=False
):
"""
User feeds these indicators to FreqAI to train a classifier to decide
if the market will go up or down.
:param pair: pair to be used as informative
:param df: strategy dataframe which will receive merges from informatives
:param tf: timeframe of the dataframe which will modify the feature names
:param informative: the dataframe associated with the informative pair
"""
if informative is None:
informative = self.dp.get_pair_dataframe(pair, tf)
# first loop is automatically duplicating indicators for time periods
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
t = int(t)
# WaveTrend using OHLC4 or HA close
informative[f"-{pair}wt_ap_{t}"] = (0.25 * (informative['high'] + informative['low'] + informative['close'] + informative['open']))
informative[f"-{pair}wt_esa_{t}"] = ta.EMA(informative[f"-{pair}wt_ap_{t}"], timeperiod=t)
informative[f"-{pair}wt_d_{t}"] = ta.EMA(abs(informative[f"-{pair}wt_ap_{t}"] - informative[f"-{pair}wt_esa_{t}"]), timeperiod=t)
informative[f"-{pair}wt_ci_{t}"] = (
(informative[f"-{pair}wt_ap_{t}"]-informative[f"-{pair}wt_esa_{t}"]) / (0.015 * informative[f"-{pair}wt_d_{t}"])
)
informative[f"%-{pair}wt1_{t}"] = ta.EMA(informative[f"-{pair}wt_ci_{t}"], timeperiod=t)
informative[f"%-{pair}wt2_{t}"] = ta.SMA(informative[f"%-{pair}wt1_{t}"], timeperiod=t)
informative[f"%-{pair}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
informative[f"%-{pair}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
informative[f"%-{pair}sma-period_{t}"] = ta.SMA(informative, timeperiod=t)
informative[f"%-{pair}roc-period_{t}"] = ta.ROC(informative, timeperiod=t)
informative[f"%-{pair}relative_volume-period_{t}"] = (
informative["volume"] / informative["volume"].rolling(t).mean()
)
# FreqAI needs the following lines in order to detect features and automatically
# expand upon them.
indicators = [col for col in informative if col.startswith("%")]
# This loop duplicates and shifts all indicators to add a sense of recency to data
for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1):
if n == 0:
continue
informative_shift = informative[indicators].shift(n)
informative_shift = informative_shift.add_suffix("_shift-" + str(n))
informative = pd.concat((informative, informative_shift), axis=1)
df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True)
skip_columns = [
(s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"]
]
df = df.drop(columns=skip_columns)
# User can set the "target" here (in present case it is the
# "up" or "down")
if set_generalized_indicators:
# User "looks into the future" here to figure out if the future
# will be "up" or "down". This same column name is available to
# the user
df['&s-up_or_down'] = np.where(df["close"].shift(-5) >
df["close"], 'up', 'down')
return df
### NORMAL INDICATORS ###
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# User creates their own custom strat here. Present example is a supertrend
# based strategy.
dataframe = self.freqai.start(dataframe, metadata, self)
# TA indicators to combine with the Freqai targets
# RSI
dataframe['rsi'] = ta.RSI(dataframe)
# TEMA - Triple Exponential Moving Average
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
# WaveTrend using OHLC4 or HA close - 3/21
ap = (0.25 * (dataframe['high'] + dataframe['low'] + dataframe["close"] + dataframe["open"]))
dataframe['esa'] = ta.EMA(ap, timeperiod = 3)
dataframe['d'] = ta.EMA(abs(ap - dataframe['esa']), timeperiod = 3)
dataframe['wave_ci'] = (ap-dataframe['esa']) / (0.015 * dataframe['d'])
dataframe['wave_t1'] = ta.EMA(dataframe['wave_ci'], timeperiod = 21)
dataframe['wave_t2'] = ta.SMA(dataframe['wave_t1'], timeperiod = 4)
# Money Flow Index
# find mfi optimum length
for valmfi in self.mfi_length.range:
dataframe[f'mfi_{valmfi}'] = ta.MFI(dataframe, timeperiod = valmfi)
dataframe['mfi_slope'] = pta.momentum.slope(dataframe[f'mfi_{valmfi}'])
return dataframe
### ENTRY CONDITIONS ###
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
df.loc[
(
# Signal: RSI crosses above 30
(qtpylib.crossed_above(df['rsi'], self.buy_rsi.value)) &
(df['tema'] > df['tema'].shift(1)) & # Guard: tema is raising
(df['volume'] > 0) & # Make sure Volume is not 0
(df['mfi_slope'] >= self.mfi_buy_slope.value) & # Money flow index
(df['do_predict'] == 1) & # Make sure Freqai is confident in the prediction
# Only enter trade if Freqai thinks the trend is in this direction
(df['&s-up_or_down'] == 'up')
),
['enter_long', 'enter_tag']] = (1, 'TEMA/RSI/MF-AI')
df.loc[
(
# Signal: RSI crosses above 30
(qtpylib.crossed_above(df['rsi'], self.buy_rsi.value)) &
(df['tema'] > df['tema'].shift(1)) & # Guard: tema is raising
(df['volume'] > 0) & # Make sure Volume is not 0
(df['do_predict'] == 1) & # Make sure Freqai is confident in the prediction
# Only enter trade if Freqai thinks the trend is in this direction
(df['&s-up_or_down'] == 'up')
),
['enter_long', 'enter_tag']] = (1, 'TEMA/RSI-AI')
df.loc[
(
(df['tema'] > df['tema'].shift(1)) & # Guard: tema is raising
(df['volume'] > 0) & # Make sure Volume is not 0
(df['mfi_slope'] >= self.mfi_buy_slope.value) & # Money flow index
(df['do_predict'] == 1) & # Make sure Freqai is confident in the prediction
# Only enter trade if Freqai thinks the trend is in this direction
(df['&s-up_or_down'] == 'up')
),
['enter_long', 'enter_tag']] = (1, 'TEMA/MF-AI')
df.loc[
(
(df['tema'] > df['tema'].shift(1)) & # Guard: tema is raising
(df['volume'] > 0) & # Make sure Volume is not 0
(df['do_predict'] == 1) & # Make sure Freqai is confident in the prediction
# Only enter trade if Freqai thinks the trend is in this direction
(df['&s-up_or_down'] == 'up')
),
['enter_long', 'enter_tag']] = (1, 'TEMA-AI')
df.loc[
(
# Signal: RSI crosses above 30
(qtpylib.crossed_above(df['rsi'], self.buy_rsi.value)) &
(df['wave_t1'] > df['wave_t1'].shift(1)) & # Guard: Wave 1 is raising
(df['wave_t1'] > df['wave_t2']) &
(df['volume'] > 0) & # Make sure Volume is not 0
(df['mfi_slope'] >= self.mfi_buy_slope.value) & # Money flow index
# (df['do_predict'] == 1) & # Make sure Freqai is confident in the prediction
# Only enter trade if Freqai thinks the trend is in this direction
(df['&s-up_or_down'] == 'up')
),
['enter_long', 'enter_tag']] = (1, 'WT/RSI/MF-AI')
df.loc[
(
# Signal: RSI crosses above 30
(qtpylib.crossed_above(df['rsi'], self.buy_rsi.value)) &
(df['wave_t1'] > df['wave_t1'].shift(1)) & # Guard: Wave 1 is raising
(df['wave_t1'] > df['wave_t2']) &
(df['volume'] > 0) & # Make sure Volume is not 0
# (df['do_predict'] == 1) & # Make sure Freqai is confident in the prediction
# Only enter trade if Freqai thinks the trend is in this direction
(df['&s-up_or_down'] == 'up')
),
['enter_long', 'enter_tag']] = (1, 'WT/RSI-AI')
df.loc[
(
(df['wave_t1'] > df['wave_t1'].shift(1)) & # Guard: Wave 1 is raising
(df['wave_t1'] > df['wave_t2']) &
(df['volume'] > 0) & # Make sure Volume is not 0
# (df['do_predict'] == 1) & # Make sure Freqai is confident in the prediction
# Only enter trade if Freqai thinks the trend is in this direction
(df['&s-up_or_down'] == 'up')
),
['enter_long', 'enter_tag']] = (1, 'WT-AI')
### Outlier Conditions
df.loc[
(
# Signal: RSI crosses above 30
(qtpylib.crossed_above(df['rsi'], self.buy_rsi.value)) &
(df['tema'] > df['tema'].shift(1)) & # Guard: tema is raising
(df['volume'] > 0) & # Make sure Volume is not 0
(df['mfi_slope'] >= self.mfi_buy_slope.value) & # Money flow index
(df['do_predict'] == -2) & # Make sure Freqai is confident in the prediction
# Only enter trade if Freqai thinks the trend is in this direction
(df['&s-up_or_down'] == 'up')
),
['enter_long', 'enter_tag']] = (1, 'TEMA/RSI/MF-AI OL')
df.loc[
(
# Signal: RSI crosses above 30
(qtpylib.crossed_above(df['rsi'], self.buy_rsi.value)) &
(df['tema'] > df['tema'].shift(1)) & # Guard: tema is raising
(df['volume'] > 0) & # Make sure Volume is not 0
(df['do_predict'] == -2) & # Make sure Freqai is confident in the prediction
# Only enter trade if Freqai thinks the trend is in this direction
(df['&s-up_or_down'] == 'up')
),
['enter_long', 'enter_tag']] = (1, 'TEMA/RSI-AI-OL')
df.loc[
(
(df['tema'] > df['tema'].shift(1)) & # Guard: tema is raising
(df['volume'] > 0) & # Make sure Volume is not 0
(df['mfi_slope'] >= self.mfi_buy_slope.value) & # Money flow index
(df['do_predict'] == -2) & # Make sure Freqai is confident in the prediction
# Only enter trade if Freqai thinks the trend is in this direction
(df['&s-up_or_down'] == 'up')
),
['enter_long', 'enter_tag']] = (1, 'TEMA/MF-AI-OL')
df.loc[
(
(df['tema'] > df['tema'].shift(1)) & # Guard: tema is raising
(df['volume'] > 0) & # Make sure Volume is not 0
(df['do_predict'] == -2) & # Make sure Freqai is confident in the prediction
# Only enter trade if Freqai thinks the trend is in this direction
(df['&s-up_or_down'] == 'up')
),
['enter_long', 'enter_tag']] = (1, 'TEMA-AI-OL')
df.loc[
(
# Signal: RSI crosses above 30
(qtpylib.crossed_above(df['rsi'], self.buy_rsi.value)) &
(df['wave_t1'] > df['wave_t1'].shift(1)) & # Guard: Wave 1 is raising
(df['wave_t1'] > df['wave_t2']) &
(df['volume'] > 0) & # Make sure Volume is not 0
(df['mfi_slope'] >= self.mfi_buy_slope.value) & # Money flow index
(df['do_predict'] == -2) & # Make sure Freqai is confident in the prediction
# Only enter trade if Freqai thinks the trend is in this direction
(df['&s-up_or_down'] == 'up')
),
['enter_long', 'enter_tag']] = (1, 'WT/RSI/MF-AI-OL')
df.loc[
(
# Signal: RSI crosses above 30
(qtpylib.crossed_above(df['rsi'], self.buy_rsi.value)) &
(df['wave_t1'] > df['wave_t1'].shift(1)) & # Guard: Wave 1 is raising
(df['wave_t1'] > df['wave_t2']) &
(df['volume'] > 0) & # Make sure Volume is not 0
(df['do_predict'] == -2) & # Make sure Freqai is confident in the prediction
# Only enter trade if Freqai thinks the trend is in this direction
(df['&s-up_or_down'] == 'up')
),
['enter_long', 'enter_tag']] = (1, 'WT/RSI-AI-OL')
df.loc[
(
(df['wave_t1'] > df['wave_t1'].shift(1)) & # Guard: Wave 1 is raising
(df['wave_t1'] > df['wave_t2']) &
(df['volume'] > 0) & # Make sure Volume is not 0
(df['do_predict'] == -2) & # Make sure Freqai is confident in the prediction
# Only enter trade if Freqai thinks the trend is in this direction
(df['&s-up_or_down'] == 'up')
),
['enter_long', 'enter_tag']] = (1, 'WT-AI-OL')
return df
### EXIT CONDITIONS ###
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
df.loc[
(
# Signal: RSI crosses above 70
(qtpylib.crossed_above(df['rsi'], self.sell_rsi.value)) &
(df['tema'] < df['tema'].shift(1)) & # Guard: tema is falling
(df['volume'] > 0) & # Make sure Volume is not 0
(df['do_predict'] == 1) & # Make sure Freqai is confident in the prediction
# Only exit trade if Freqai thinks the trend is in this direction
(df['&s-up_or_down'] == 'down')
),
['exit_long', 'exit_tag']] = (1, 'TEMA/RSI-AI')
# df.loc[
# (
# (df['tema'] < df['tema'].shift(1)) & # Guard: tema is falling
# (df['volume'] > 0) # Make sure Volume is not 0
# ),
# ['exit_long', 'exit_tag']] = (1, 'TEMA')
df.loc[
(
# Signal: RSI crosses above 30
(qtpylib.crossed_above(df['rsi'], self.sell_rsi.value)) &
(df['wave_t1'] < df['wave_t1'].shift(1)) & # Guard: Wave 1 is raising
(df['wave_t1'] < df['wave_t2']) &
(df['volume'] > 0) & # Make sure Volume is not 0
(df['do_predict'] == 1) & # Make sure Freqai is confident in the prediction
# Only exitr trade if Freqai thinks the trend is in this direction
(df['&s-up_or_down'] == 'down')
),
['exit_long', 'exit_tag']] = (1, 'WT/RSI-AI')
df.loc[
(
# Signal: RSI crosses above 30
(qtpylib.crossed_above(df['rsi'], self.sell_rsi.value)) &
(df['wave_t1'] < df['wave_t1'].shift(1)) & # Guard: Wave 1 is raising
(df['wave_t1'] < df['wave_t2']) &
(df['volume'] > 0) # Make sure Volume is not 0
),
['exit_long', 'exit_tag']] = (1, 'WT/RSI')
df.loc[
(
(df['wave_t1'] < df['wave_t1'].shift(1)) & # Guard: Wave 1 is raising
(df['wave_t1'] < df['wave_t2']) &
(df['volume'] > 0) & # Make sure Volume is not 0
(df['do_predict'] == 1) & # Make sure Freqai is confident in the prediction
# Only exitr trade if Freqai thinks the trend is in this direction
(df['&s-up_or_down'] == 'down')
),
['exit_long', 'exit_tag']] = (1, 'WT-AI')
# df.loc[
# (
# (df['wave_t1'] < df['wave_t1'].shift(1)) & # Guard: Wave 1 is raising
# (df['wave_t1'] < df['wave_t2']) &
# (df['volume'] > 0) # Make sure Volume is not 0
# ),
# ['exit_long', 'exit_tag']] = (1, 'WT')
return df