forked from SWivid/F5-TTS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_librispeech_test_clean.py
96 lines (74 loc) · 3.41 KB
/
eval_librispeech_test_clean.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# Evaluate with Librispeech test-clean, ~3s prompt to generate 4-10s audio (the way of valle/voicebox evaluation)
import argparse
import json
import os
import sys
sys.path.append(os.getcwd())
import multiprocessing as mp
from importlib.resources import files
import numpy as np
from f5_tts.eval.utils_eval import (
get_librispeech_test,
run_asr_wer,
run_sim,
)
rel_path = str(files("f5_tts").joinpath("../../"))
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("-e", "--eval_task", type=str, default="wer", choices=["sim", "wer"])
parser.add_argument("-l", "--lang", type=str, default="en")
parser.add_argument("-g", "--gen_wav_dir", type=str, required=True)
parser.add_argument("-p", "--librispeech_test_clean_path", type=str, required=True)
parser.add_argument("-n", "--gpu_nums", type=int, default=8, help="Number of GPUs to use")
parser.add_argument("--local", action="store_true", help="Use local custom checkpoint directory")
return parser.parse_args()
def main():
args = get_args()
eval_task = args.eval_task
lang = args.lang
librispeech_test_clean_path = args.librispeech_test_clean_path # test-clean path
gen_wav_dir = args.gen_wav_dir
metalst = rel_path + "/data/librispeech_pc_test_clean_cross_sentence.lst"
gpus = list(range(args.gpu_nums))
test_set = get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path)
## In LibriSpeech, some speakers utilized varying voice characteristics for different characters in the book,
## leading to a low similarity for the ground truth in some cases.
# test_set = get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path, eval_ground_truth = True) # eval ground truth
local = args.local
if local: # use local custom checkpoint dir
asr_ckpt_dir = "../checkpoints/Systran/faster-whisper-large-v3"
else:
asr_ckpt_dir = "" # auto download to cache dir
wavlm_ckpt_dir = "../checkpoints/UniSpeech/wavlm_large_finetune.pth"
# --------------------------- WER ---------------------------
if eval_task == "wer":
wer_results = []
wers = []
with mp.Pool(processes=len(gpus)) as pool:
args = [(rank, lang, sub_test_set, asr_ckpt_dir) for (rank, sub_test_set) in test_set]
results = pool.map(run_asr_wer, args)
for r in results:
wer_results.extend(r)
wer_result_path = f"{gen_wav_dir}/{lang}_wer_results.jsonl"
with open(wer_result_path, "w") as f:
for line in wer_results:
wers.append(line["wer"])
json_line = json.dumps(line, ensure_ascii=False)
f.write(json_line + "\n")
wer = round(np.mean(wers) * 100, 3)
print(f"\nTotal {len(wers)} samples")
print(f"WER : {wer}%")
print(f"Results have been saved to {wer_result_path}")
# --------------------------- SIM ---------------------------
if eval_task == "sim":
sims = []
with mp.Pool(processes=len(gpus)) as pool:
args = [(rank, sub_test_set, wavlm_ckpt_dir) for (rank, sub_test_set) in test_set]
results = pool.map(run_sim, args)
for r in results:
sims.extend(r)
sim = round(sum(sims) / len(sims), 3)
print(f"\nTotal {len(sims)} samples")
print(f"SIM : {sim}")
if __name__ == "__main__":
main()