forked from bigscience-workshop/Megatron-DeepSpeed
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain_ul2.py
270 lines (222 loc) · 8.96 KB
/
pretrain_ul2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Pretrain UL2"""
import argparse
from functools import partial
import deepspeed
from deepspeed.runtime.utils import see_memory_usage
import torch
from megatron import (
get_args,
get_timers,
mpu,
print_rank_0
)
from megatron.data.dataset_utils import build_train_valid_test_datasets
from megatron.data.ul2_dataset import (
is_decoder_only as _is_decoder_only,
is_prefix_lm as _is_prefix_lm,
)
from megatron.enums import AttnMaskType
from megatron.model.gpt_model import GPTModel, GPTModelPipe
from megatron.model.t5_model import T5Model, t5_position_ids
from megatron.training import pretrain
from megatron.utils import average_losses_across_data_parallel_group
def is_decoder_only():
"""Return whether we use a decoder-only model."""
args = get_args()
return _is_decoder_only(args.ul2_model_type)
def is_prefix_lm():
"""Return whether we use a non-causal decoder-only model."""
args = get_args()
return _is_prefix_lm(args.ul2_model_type)
def model_provider(pre_process=True, post_process=True):
"""Build the model."""
args = get_args()
see_memory_usage("Before Building Model", force=True)
with deepspeed.zero.Init(data_parallel_group=mpu.get_data_parallel_group(),
remote_device=(
None
if args.remote_device == 'none'
else args.remote_device
),
config_dict_or_path=args.deepspeed_config,
enabled=args.zero_stage == 3,
mpu=mpu):
print_rank_0('building UL2 model ...')
if is_decoder_only():
print_rank_0('Using decoder-only UL2 model.')
if args.deepspeed:
args.pretrain_causal_attention = not is_prefix_lm()
model = GPTModelPipe(
num_tokentypes=0,
parallel_output=True,
attn_mask_type=(
AttnMaskType.prefix
if is_prefix_lm()
else AttnMaskType.causal
),
)
# This is a hack to give us a reference to
# `get_batch_pipe` from within `training.py`.
# We need to call `model.set_batch_fn` after
# `deepspeed.initialize`.
model._megatron_batch_fn = get_batch_pipe
else:
model = GPTModel(
num_tokentypes=0,
parallel_output=True,
pre_process=pre_process,
post_process=post_process,
prefix_lm=is_prefix_lm(),
)
else:
assert pre_process and post_process and not args.deepspeed, \
"Encoder-decoder model doesn't yet support pipelining"
print_rank_0('Using encoder-decoder UL2 model.')
model = T5Model(num_tokentypes=0, parallel_output=True)
see_memory_usage("After Building Model", force=True)
return model
def get_batch(data_iterator):
"""Build the batch."""
if is_decoder_only():
keys = ['text', 'labels', 'loss_mask', 'dec_mask']
else:
keys = ['text_enc', 'text_dec', 'labels', 'loss_mask',
'enc_mask', 'dec_mask', 'enc_dec_mask']
datatype = torch.int64
# Broadcast data.
if data_iterator is not None:
data = next(data_iterator)
else:
data = None
data_b = mpu.broadcast_data(keys, data, datatype)
# Unpack.
if is_decoder_only():
tokens = data_b['text'].long()
labels = data_b['labels'].long()
loss_mask = data_b['loss_mask'].float()
dec_mask = (data_b['dec_mask'] < 0.5)
dec_mask = dec_mask.unsqueeze(1)
return tokens, loss_mask, labels, dec_mask
else:
tokens_enc = data_b['text_enc'].long()
tokens_dec = data_b['text_dec'].long()
labels = data_b['labels'].long()
loss_mask = data_b['loss_mask'].float()
enc_mask = (data_b['enc_mask'] < 0.5)
dec_mask = (data_b['dec_mask'] < 0.5)
enc_dec_mask = (data_b['enc_dec_mask'] < 0.5)
return tokens_enc, tokens_dec, loss_mask, labels, \
enc_mask, dec_mask, enc_dec_mask
def get_batch_pipe(data):
"""Modification of `get_batch` to work on `next(data_iterator)`
instead of `data_iterator`.
"""
if is_decoder_only():
keys = ['text', 'labels', 'loss_mask', 'dec_mask']
else:
keys = ['text_enc', 'text_dec', 'labels', 'loss_mask',
'enc_mask', 'dec_mask', 'enc_dec_mask']
datatype = torch.int64
# Broadcast data.
data_b = mpu.broadcast_data(keys, data, datatype)
# Unpack.
if is_decoder_only():
tokens = data_b['text'].long()
labels = data_b['labels'].long()
loss_mask = data_b['loss_mask'].float()
dec_mask = (data_b['dec_mask'] < 0.5)
dec_mask = dec_mask.unsqueeze(1)
position_ids = t5_position_ids(tokens)
return (tokens, position_ids, dec_mask), (labels, loss_mask)
else:
tokens_enc = data_b['text_enc'].long()
tokens_dec = data_b['text_dec'].long()
labels = data_b['labels'].long()
loss_mask = data_b['loss_mask'].float()
enc_mask = (data_b['enc_mask'] < 0.5)
dec_mask = (data_b['dec_mask'] < 0.5)
enc_dec_mask = (data_b['enc_dec_mask'] < 0.5)
# This will probably be incorrect. Need to adapt this if
# pipelining for encoder-decoder models is ever implemented (and
# implemented similarly to the GPT model).
return (tokens_enc, tokens_dec, enc_mask, dec_mask, enc_dec_mask), \
(labels, loss_mask)
def loss_func(loss_mask, output_tensor):
if is_decoder_only():
lm_loss_ = output_tensor
else:
lm_loss_, _ = output_tensor
lm_loss_ = lm_loss_.float()
lm_loss = torch.sum(
lm_loss_.view(-1) * loss_mask.reshape(-1)) / loss_mask.sum()
loss = lm_loss
averaged_losses = average_losses_across_data_parallel_group([lm_loss])
return loss, {'lm loss': averaged_losses[0]}
def forward_step(data_iterator, model):
"""Forward step."""
args = get_args()
timers = get_timers()
# Get the batch.
timers('batch generator').start()
if is_decoder_only():
(tokens, loss_mask, lm_labels, dec_mask) = get_batch(data_iterator)
else:
(
tokens_enc, tokens_dec, loss_mask, lm_labels,
enc_mask, dec_mask, enc_dec_mask,
) = get_batch(data_iterator)
timers('batch generator').stop()
# Forward model lm_labels
if is_decoder_only():
position_ids = t5_position_ids(tokens)
output_tensor = model(tokens, position_ids, dec_mask,
labels=lm_labels)
else:
output_tensor = model(tokens_enc,
tokens_dec,
enc_mask,
dec_mask,
enc_dec_mask,
tokentype_ids=None,
lm_labels=lm_labels)
return output_tensor, partial(loss_func, loss_mask)
def train_valid_test_datasets_provider(train_val_test_num_samples):
"""Build train, valid, and test datasets."""
args = get_args()
print_rank_0('> building train, validation, and test datasets '
'for UL2 ...')
train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
data_prefix=args.data_path,
data_impl=args.data_impl,
splits_string=args.split,
train_valid_test_num_samples=train_val_test_num_samples,
max_seq_length=args.encoder_seq_length,
max_seq_length_dec=args.decoder_seq_length,
masked_lm_prob=args.mask_prob,
short_seq_prob=args.short_seq_prob,
seed=args.seed,
skip_warmup=(not args.mmap_warmup),
dataset_type='ul2')
print_rank_0("> finished creating UL2 datasets ...")
return train_ds, valid_ds, test_ds
def extra_args_provider(parser):
parser.add_argument('--_is_ul2', default=True, help=argparse.SUPPRESS)
return parser
if __name__ == "__main__":
pretrain(train_valid_test_datasets_provider, model_provider, forward_step,
extra_args_provider=extra_args_provider,
args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})