-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathrouter.py
115 lines (98 loc) · 3.26 KB
/
router.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
from PIL import Image
import numpy as np
from scipy.signal import convolve2d
EMPTY = 0xffff
COST_H = [5, 1]
COST_V = [1, 5]
COST_VIA = 100
conn4 = [(0, 1), (0, -1), (1, 0), (-1, 0), (0, 0)]
def lees_algorithm(occupied, start, end):
cost_grid = np.full(occupied.shape, EMPTY).astype(np.uint16)
cost_grid[start] = 1
def spreadxy(layer, cg):
filled = cg != EMPTY
hb = np.where(filled, cg + COST_H[layer], EMPTY)
vb = np.where(filled, cg + COST_V[layer], EMPTY)
r = np.zeros_like(hb)
r[:, 1:] = hb[:, :-1]
r[:, 0] = EMPTY
l = np.zeros_like(hb)
l[:, :-1] = hb[:, 1:]
l[:, -1] = EMPTY
u = np.zeros_like(vb)
u[:-1, :] = vb[1:, :]
u[-1, :] = EMPTY
d = np.zeros_like(vb)
d[1:, :] = vb[:-1, :]
d[0, :] = EMPTY
return np.minimum.reduce((l, r, u, d))
keepout = np.where(occupied, EMPTY, 0)
vias = np.full(occupied.shape, 0)
while cost_grid[end] == EMPTY:
sp0 = spreadxy(0, cost_grid[0])
sp1 = spreadxy(1, cost_grid[1])
sp = np.stack((sp0, sp1))
filled = cost_grid != EMPTY
tb0 = np.where(filled[1], cost_grid[1] + COST_VIA, EMPTY)
tb1 = np.where(filled[0], cost_grid[0] + COST_VIA, EMPTY)
tb = np.stack((tb0, tb1))
b = np.minimum(sp, tb)
via = ((filled == 0) & (tb != EMPTY) & (tb == b))
vias |= via
if 1:
cost_grid = np.minimum(cost_grid, b | keepout)
else:
cost_grid = np.where(filled | keepout, cost_grid, b)
print(vias)
print(cost_grid)
(_, w, h) = cost_grid.shape
used = np.full(occupied.shape, 0).astype(np.uint8)
cp = end
used[cp] = 1
path = [end]
while cp != start:
(s, t, u) = cp
neighbors = [(0, (s, t + j, u + k)) for (j, k) in conn4 if (0 <= (t + j) < w) and (0 <= (u + k) < h)]
if vias[cp]:
neighbors += [(COST_VIA, (s ^ 1, t, u))]
options = [((cost_grid[nb], pref), nb) for (pref,nb) in neighbors]
print(f"{options=}")
lowest = min(options)
(_,cp) = lowest
path.append(cp)
used[cp] = 1
return (path, used)
def save_wires(u):
(_, h, w) = u.shape
blu = Image.fromarray(u[0]*255, "L")
red = Image.fromarray(u[1]*255, "L")
grn = Image.new("L", (w, h))
f = 600 // w
Image.merge("RGB", (red, grn, blu)).resize((w*f, h*f), Image.NEAREST).save("out.png")
def simple_5x5():
grid = np.array([
[[0, 0, 0, 0, 1, 0],
[1, 1, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0]],
[[0, 0, 0, 0, 1, 0],
[1, 1, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0]]
])
grid = np.zeros((2, 5, 6))
start = (0, 0, 0)
end = (1, 4, 5)
(path, used) = lees_algorithm(grid, start, end)
save_wires(used)
def random_100():
grid = np.zeros((2, 100, 100), dtype=np.uint16)
print(grid)
start = (0, 0, 0)
end = (1, 99, 99)
(path, used) = lees_algorithm(grid, start, end)
save_wires(used)
simple_5x5()
# random_100()