-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_graphs.py
326 lines (242 loc) · 12.2 KB
/
make_graphs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
# coding: utf-8
# In[1]:
import numpy as np
import os
import pandas as pd
pd.options.display.float_format = '{:20,.4f}'.format
import sqlite3
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
import json
import re
import igraph as ig
import itertools
from datetime import datetime
import pytz
import time
import gc
import warnings
warnings.filterwarnings('ignore')
load_from_scratch = True
# In[2]:
cons = {}
cons['evolBio'] = sqlite3.connect("data/BMCevolBioSample.db")
cons['bio'] = sqlite3.connect("data/BMCbioSample.db")
cons['bmc'] = sqlite3.connect("data/bmcTwitter.db")
cons['comm'] = sqlite3.connect("data/communications.db")
cons['pundit'] = sqlite3.connect("data/pundits.db")
dataset = 'pundit'
# In[23]:
def load_tweet_details(con = None, min_nodes=None):
df = pd.read_sql("SELECT doi, tweet_id, old_screen_name, tweet FROM sample WHERE tweet IS NOT NULL ", con, index_col='tweet_id')
df = df[~df.tweet.isnull()]
df['tweet'] = df.tweet.apply(lambda x: json.loads(x) if x is not None else None)
df['created_at'] = df.tweet.apply(lambda x: time.strftime('%Y-%m-%d %H:%M:%S', time.strptime(x['created_at'],'%a %b %d %H:%M:%S +0000 %Y')))
df['created_at'] = pd.to_datetime(df.created_at)
df['created_at_dayofweek'] = df.tweet.apply(lambda x: x['created_at'][0:3])
df['screen_name'] = df.tweet.apply(lambda x: x['user']['screen_name'])
df['user_id'] = df.tweet.apply(lambda x: int(x['user']['id_str']))
df['user_utc_offset'] = df.tweet.apply(lambda x: x['user']['utc_offset'])
df['user_followers_count'] = df.tweet.apply(lambda x: x['user']['followers_count'])
df['user_friends_count'] = df.tweet.apply(lambda x: x['user']['friends_count'])
df['user_description'] = df.tweet.apply(lambda x: re.sub( '\s+', ' ', x['user']['description']).strip())
df['is_retweet'] = df.tweet.apply(lambda x: 'retweeted_status' in x)
df['is_retweet'] = df['is_retweet'].fillna(False)
df['retweet_of_status_id_str'] = df.tweet.apply(lambda x: x['retweeted_status']['id_str'] if 'retweeted_status' in x else None)
df['retweet_of_screen_name'] = df.tweet.apply(lambda x: x['retweeted_status']['user']['screen_name'] if 'retweeted_status' in x else None)
df['is_reply'] = df.tweet.apply(lambda x: x['in_reply_to_status_id'] != None)
df['in_reply_to_status_id_str'] = df.tweet.apply(lambda x: x['in_reply_to_status_id_str'])
df['in_reply_to_screen_name'] = df.tweet.apply(lambda x: x['in_reply_to_screen_name'])
df['text'] = df.tweet.apply(lambda x: re.sub( '\s+', ' ', x['text']).strip()) # remove commas for CSV simplicity
del df['tweet']
tweetdetails = df.sort_index()
del df
df = pd.read_sql("SELECT doi, tweet_id, old_screen_name, tweet FROM sample WHERE error LIKE '%screen_name%'", con, index_col='old_screen_name')
users_df = pd.read_sql("SELECT user_id, screen_name FROM users", con, index_col = 'screen_name')
users_df['user_id'] = users_df.user_id.astype(int)
df = df.join(users_df, how="inner")
df.index.name = 'screen_name'
tweetdetails = tweetdetails.append(df.set_index('tweet_id', drop=False)).sort_index()
del df
del users_df
if min_nodes:
tweetdetails = tweetdetails.groupby('doi').filter(lambda row: len(set(row['user_id'])) > min_nodes)
return tweetdetails
def load_graphs(con, tweetdetails = None, min_nodes = None):
try:
dois = list(tweetdetails.doi.unique())
except:
tweetdetails = load_tweet_details(con, min_nodes)
dois = list(tweetdetails.doi.unique())
friends = pd.read_sql_query("SELECT * FROM friends", con, index_col="user_id")
friends.index = friends.index.astype(int)
friends.friend_id = friends.friend_id.astype(int)
followers = pd.read_sql_query("SELECT * FROM followers", con, index_col="user_id")
followers.index = followers.index.astype(int)
followers.follower_id = followers.follower_id.astype(int)
# join the list of users with the friends to construct a one-way edge list
df = tweetdetails[['doi', 'user_id']].drop_duplicates().set_index('user_id').join(friends)[['friend_id', 'doi']]
df = df[df.friend_id.notnull()]
df.friend_id = df.friend_id.astype(int)
df = df.reset_index()
df.columns = ['in', 'out', 'doi']
# do the same thing for the followers
df2 = tweetdetails[['doi', 'user_id']].drop_duplicates().set_index('user_id').join(followers)[['follower_id', 'doi']]
df2 = df2[df2.follower_id.notnull()]
df2.follower_id = df2.follower_id.astype(int)
df2 = df2.reset_index()
df2.columns = ['out', 'in', 'doi']
edgelist = df.append(df2).set_index('in').reset_index()
edgelist = edgelist.drop_duplicates()
graphs = {}
for doi in dois:
e = edgelist[edgelist.doi == doi]
if len(e) == 0:
continue
del e['doi']
filename = 'data/%s/%s-edgelist.csv' % (dataset, doi.replace('/','_'))
e.columns = ['Source', 'Target']
e.to_csv(filename, index=False, sep="\t", header=None) # this is just for reading again
graphs[doi] = ig.Graph.Read_Ncol(filename, names=True, directed=True)
e.to_csv(filename, index=False)
del edgelist
del friends
del followers
del df
gc.collect()
return graphs
tweetdetails = load_tweet_details(cons[dataset])
tweetdetails.to_csv('data/%s/tweetDetailsAll.csv' % dataset, encoding='utf8')
def timedelta_to_days(td):
return td.days + td.seconds/3600.0/24
def median_timestamp(x):
ts = list(map(lambda t: t.value/1000000000, x))
return datetime.fromtimestamp(int(np.median(ts)), tz=pytz.utc).replace(tzinfo=None)
def lifespan(x):
return timedelta_to_days(x.max()-x.min())
def halflife(x):
return timedelta_to_days(median_timestamp(x)-x.min())
tweet_stats = tweetdetails[~tweetdetails.created_at.isnull()].groupby('doi').agg({'created_at': [np.min, lifespan, median_timestamp, halflife],
'is_retweet': [np.size, np.sum, lambda x: 100.0*x.sum()/len(x)]})
tweet_stats.columns = ['created_at', 'tweet_lifespan', 'median_tweettime', 'tweet_halflife', 'tweets', 'retweets', 'retweets_p']
if load_from_scratch:
graphs = load_graphs(cons[dataset], tweetdetails)
print (len(graphs), len(tweetdetails))
else:
dois = tweetdetails.doi.unique()
graphs = {}
for doi in dois:
filename = 'data/%s/%s-edgelist.csv' % (dataset, doi.replace('/','_'))
e = pd.read_csv(filename)
e.to_csv('data/tmp.tsv', index=False, sep="\t", header=None) # this is just for reading again
graphs[doi] = ig.Graph.Read_Ncol('data/tmp.tsv', names=True, directed=True)
print (len(graphs), len(tweetdetails))
dois = graphs.keys()
subgraphs = {}
calculate_shortest = True
graph_stats = {}
shortest_paths = {}
for i, doi in enumerate(dois):
tweets = tweetdetails[tweetdetails.doi == doi]
tweets['event_number'] = tweets.index.map(lambda x: tweets.index.get_loc(x))
tweets['user_id_str'] = tweets.user_id.astype(str)
del tweets['user_id'] # delete to avoid confusion: probably should just use numeric throughout
tweeters = tweetdetails[tweetdetails.doi == doi].user_id.unique().astype(str)
# temporary for testing, make sure all tweeters are in the graph
G = graphs[doi]
for t in tweeters:
if t not in [v['name'] for v in G.vs]:
G.add_vertex(t)
# end temporary
G = graphs[doi].subgraph(tweeters)
subgraphs[doi] = G
print("%s\t%s\t%s" % (doi, G.vcount(), G.ecount()))
graph_stats[doi] = {}
graph_stats[doi]['density'] = G.density()
graph_stats[doi]['num_nodes'] = G.vcount()
graph_stats[doi]['num_edges'] = G.ecount()
graph_stats[doi]['diameter'] = G.diameter()
graph_stats[doi]['in_degree_mean'] = np.mean(G.indegree())
graph_stats[doi]['out_degree_mean'] = np.mean(G.outdegree())
graph_stats[doi]['degree_mean'] = np.mean(G.degree())
wccs = sorted(G.components(mode=ig.WEAK).subgraphs(), key=lambda g: g.vcount(), reverse=True)
graph_stats[doi]['biggest_wcc_num_nodes'] = wccs[0].vcount()
graph_stats[doi]['biggest_wcc_num_nodes_p'] = wccs[0].vcount()*100.0/G.vcount()
graph_stats[doi]['biggest_wcc_density'] = wccs[0].density()
graph_stats[doi]['biggest_wcc_infomap_modularity'] = wccs[0].community_infomap().modularity
if G.ecount() == 0:
continue
paths = G.shortest_paths(mode=ig.ALL)
graph_stats[doi]['shortest_paths_mean'] = np.mean([item if item != np.inf else 0 for sublist in paths for item in sublist ])
graph_stats[doi]['shortest_paths_median'] = np.median([item if item != np.inf else 0 for sublist in paths for item in sublist ])
graph_stats[doi]['infomap_modularity'] = G.community_infomap().modularity
filename = 'data/%s/%s-subgraph-edgelist.csv' % (dataset, doi.replace('/','_'))
G.write_ncol(filename)
df = pd.read_csv(filename, sep=" ", header=None)
df.columns = ['Source', 'Target']
df.to_csv(filename, index=False)
if calculate_shortest:
path_lengths = []
# double check that order is preserved with .unique
exposure_paths = []
for t, f in itertools.combinations(tweets.user_id_str.unique(), 2):
paths = G.get_shortest_paths(t, f, mode=ig.IN)
# handle case where more than one path is returned
if len(paths) > 0 and len(paths[0]) > 0:
exposure_paths.append(paths[0])
path_lengths.append(len(paths[0]))
# paths = G.get_shortest_paths(f, t, mode=ig.IN)
# path_lengths.append(len(paths[0]))
shortest_paths[doi] = exposure_paths
graph_stats[doi]['shortest_exposure_path_length_mean'] = np.mean(path_lengths)
graph_stats[doi]['shortest_exposure_path_length_median'] = np.median(path_lengths)
subG = G
tweeters = {}
for v in subG.vs():
tweeters[v.index] = {}
tweeters[v.index]['name'] = v['name']
tweeters[v.index]['event_number'] = tweets[tweets.user_id_str == v['name']].event_number.min()
edges = set()
for p in exposure_paths:
for v_index in range(len(p)-1):
edges.add((p[v_index], p[v_index+1]))
G = ig.Graph(directed=True)
G.add_vertices([tweeters[v_index]['name'] for v_index in range(subG.vcount())])
for v_index in range(subG.vcount()):
G.vs[v_index]['event_number'] = tweeters[v_index]['event_number']
for e in edges:
G.add_edge(e[0], e[1])
# ax = axes[plot_map[i][0],plot_map[i][1]]
# ax.set_title(doi)
# pd.Series(path_lengths).plot.hist(xlim=[0,10], bins=range(-1,10), ax=ax)
graph_stats = pd.DataFrame.from_dict(graph_stats, orient='index')
graph_stats.index.name = 'doi'
graph_stats.to_csv('data/%s/graph_stats.csv' % dataset)
all_stats = graph_stats.join(tweet_stats)
all_stats.to_csv('data/%s/all_stats.csv' % dataset)
plt.rcParams['figure.figsize'] = (10,10)
print('Finished successfully!')
df = pd.DataFrame(all_stats, columns=['num_nodes', 'biggest_wcc_num_nodes_p', 'shortest_paths_mean', 'shortest_exposure_path_length_mean', 'density', 'retweets_p', 'tweet_lifespan', 'tweet_halflife', 'biggest_wcc_infomap_modularity'])
pd.tools.plotting.scatter_matrix(df, s=150, diagonal='hist')
plt.tight_layout()
plt.savefig('data/%s/scatterplot.png' % dataset)
sns.set(style="white")
sns.set(style="ticks", color_codes=True)
# and now the fancy version
df = all_stats[['num_nodes', 'biggest_wcc_num_nodes_p', 'shortest_paths_mean', 'shortest_exposure_path_length_mean', 'density', 'retweets_p', 'tweet_lifespan', 'tweet_halflife', 'biggest_wcc_infomap_modularity']]
g = sns.PairGrid(df, diag_sharey=False)
g.map_lower(sns.kdeplot, cmap="Blues_d")
g.map_upper(plt.scatter)
g.map_diag(sns.kdeplot, lw=3)
def corrfunc(x, y, **kws):
# _, _, r_value, p_value, _ = stats.linregress(x, y)
slope, intercept, r_value, p_value, std_err = stats.linregress(x, y)
ax = plt.gca()
ax.plot(x, intercept + slope*x, 'r')
ax.annotate("R-sq = {:.2f}".format(r_value**2),
xy=(.68, .1), xycoords=ax.transAxes)
g.map_upper(corrfunc)
plt.savefig('data/%s/scatterplot_kde.png' % dataset)