-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPollution.py
487 lines (413 loc) · 15 KB
/
Pollution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed May 17 21:34:43 2017
@author: clairelasserre
"""
import matplotlib.pyplot as plt
import xlrd
from matplotlib import style
style.use("ggplot")
from sklearn.cluster import KMeans
from time import time
import numpy as np
import matplotlib.pyplot as plt
from sklearn import metrics
from sklearn.cluster import KMeans,MiniBatchKMeans,AffinityPropagation,MeanShift, estimate_bandwidth
from sklearn.datasets import load_digits
from sklearn.decomposition import PCA
from sklearn.preprocessing import scale
import pandas as pd
import time
from sklearn.metrics.pairwise import pairwise_distances_argmin
pull=[]
wb1 = xlrd.open_workbook('LAEI2010_GridSplits_Oil_Areas_all_years.xls')
sh1 = wb1.sheet_by_index(0)
"""ETAPE 1 : on fait u k means avec comme features uniqument le taux de CO2 annuel
motif : ici comme 1 feature, 1 graphe aurait suffi mais le but est de prédire pour obtenir un graphe du type voronoid (ie continu)"""
"""
X=[]
for a in range(1,sh1.nrows-1):
X.append(sh1.cell(a,7).value)
Y=[]
for a in range(1,sh1.nrows-1):
Y.append(sh1.cell(a,8).value)
Area=[]
for a in range(1,sh1.nrows-1):
Area.append(sh1.cell(a,8).value)
CO2=[]
for a in range(1,sh1.nrows-1):
CO2.append([float(sh1.cell(a,14).value)] )
n=len(CO2)
def LondonMapCO2Kmeans():
kmeans = KMeans(init='k-means++', n_clusters=5, n_init=10)
kmeans.fit(CO2)
labels=kmeans.labels_
data0 =[]
data1=[]
data2=[]
data3=[]
X0=[]
Y0=[]
X1=[]
Y1=[]
X2=[]
Y2=[]
X3=[]
Y3=[]
X4=[]
Y4=[]
for i in range (len(CO2)):
if(labels[i]==0):
data0.append(CO2[i])
X0.append(X[i])
Y0.append(Y[i])
if(labels[i]==1):
data1.append(CO2[i])
X1.append(X[i])
Y1.append(Y[i])
if(labels[i]==2):
data2.append(CO2[i])
X2.append(X[i])
Y2.append(Y[i])
if(labels[i]==3):
data3.append(CO2[i])
X3.append(X[i])
Y3.append(Y[i])
if(labels[i]==4):
data3.append(CO2[i])
X4.append(X[i])
Y4.append(Y[i])
x_min, x_max = min(X)-1,max(X)+1
y_min,y_max = min(Y)-1,max(Y)+1
plt.figure(1)
plt.clf()
centroids = kmeans.cluster_centers_
plt.plot(X0,Y0,'o',marker='.',color='g',label=centroids[0])
plt.plot(X1,Y1,'o',marker='.',color='b',label=centroids[1])
plt.plot(X2,Y2,'o',marker='.',color='c',label=centroids[2])
plt.plot(X3,Y3,'o',marker='.',color='r',label=centroids[3])
plt.plot(X4,Y4,'o',marker='.',color='w',label=centroids[4])
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xlabel("Coordonnée X")
plt.ylabel("Coordonnée Y")
plt.title("CO2 dans Londres")
#plt.legend()
plt.show()
print("La zone verte correspond à une zone de CO2 moyenne " , centroids[0][0] , 'tonnes par an')
print("La zone bleue correspond à une zone de CO2 moyenne " , centroids[1][0] , 'tonnes par an')
print("La zone turquoise correspond à une zone de CO2 moyenne " , centroids[2][0] , 'tonnes par an')
print("La zone rouge correspond à une zone de CO2 moyenne " , centroids[3][0] , 'tonnes par an')
print("La zone blanche correspond à une zone de CO2 moyenne " , centroids[4][0] , 'tonnes par an')
"""
"""PARTIE 2 : prendre en compte différentes données de pollution"""
"""
X=[]
for a in range(1,sh1.nrows-1):
X.append(sh1.cell(a,7).value)
Y=[]
for a in range(1,sh1.nrows-1):
Y.append(sh1.cell(a,8).value)
data=[]
for a in range(1,sh1.nrows-1):
l=[]
for j in range (14,sh1.ncols):
l.append(float(sh1.cell(a,j).value) )
data.append(l)
def LondonMapAllPollutionKmeans():
kmeans = KMeans(init='k-means++', n_clusters=5, n_init=10)
kmeans.fit(data)
labels=kmeans.labels_
data0 =[]
data1=[]
data2=[]
data3=[]
X0=[]
Y0=[]
X1=[]
Y1=[]
X2=[]
Y2=[]
X3=[]
Y3=[]
X4=[]
Y4=[]
for i in range (len(data)):
if(labels[i]==0):
data0.append(data[i])
X0.append(X[i])
Y0.append(Y[i])
if(labels[i]==1):
data1.append(data[i])
X1.append(X[i])
Y1.append(Y[i])
if(labels[i]==2):
data2.append(data[i])
X2.append(X[i])
Y2.append(Y[i])
if(labels[i]==3):
data3.append(data[i])
X3.append(X[i])
Y3.append(Y[i])
if(labels[i]==4):
data3.append(data[i])
X4.append(X[i])
Y4.append(Y[i])
x_min, x_max = min(X)-1,max(X)+1
y_min,y_max = min(Y)-1,max(Y)+1
plt.figure(1)
plt.clf()
centroids = kmeans.cluster_centers_
plt.plot(X0,Y0,'o',marker='.',color='g',label=centroids[0])
plt.plot(X1,Y1,'o',marker='.',color='b',label=centroids[1])
plt.plot(X2,Y2,'o',marker='.',color='c',label=centroids[2])
plt.plot(X3,Y3,'o',marker='.',color='r',label=centroids[3])
plt.plot(X4,Y4,'o',marker='.',color='w',label=centroids[4])
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xlabel("Coordonnée X")
plt.ylabel("Coordonnée Y")
plt.title("tous types de polluants Londres dans Londres")
plt.show()
"""
"""PARTIE 3 : comparaison des méthodes en terme de temps (difficile efficacité car on a pas les labels_true)"""
"""
X=[]
for a in range(1,sh1.nrows-1):
X.append(sh1.cell(a,7).value)
Y=[]
for a in range(1,sh1.nrows-1):
Y.append(sh1.cell(a,8).value)
data=[]
for a in range(1,sh1.nrows-1):
l=[]
for j in range (14,sh1.ncols):
l.append(float(sh1.cell(a,j).value) )
data.append(l)
#datareduce correspond à data mais avec uniquement 2 features, CO2 et un autre, on ne l'utilise que pour montrer
#..l'absurdité de la méthode affinityPropragation
datareduce =[]
for a in range(1,sh1.nrows-1):
l=[]
l.append(float(sh1.cell(a,14).value) )
l.append(float(sh1.cell(a,20).value) )
datareduce.append(l)
def ClusteriserData(methode,nclusters,data):
if (methode==1) :
kmeans = KMeans(init='k-means++',algorithm='auto', n_clusters=nclusters, n_init=10)
t0 = time.time()
kmeans.fit(data)
labels=kmeans.labels_
centroids = kmeans.cluster_centers_
delta_t = time.time() - t0
if (methode==2):
batch_size = 45
mbk = MiniBatchKMeans(init='k-means++', algorithm='auto',n_clusters=nclusters, batch_size=batch_size,
n_init=10, max_no_improvement=10, verbose=0)
t0 = time.time()
mbk.fit(data)
labels=mbk.labels_
centroids = mbk.cluster_centers_
delta_t = time.time() - t0
if (methode==3): #donne une idée du nombre de clusters idéals : 38 ! #expliquer que trop de valeur donc il faut se restreindre pour ploter
t0 = time.time()
af = AffinityPropagation(convergence_iter =5).fit(datareduce[:100])
cluster_centers_indices = af.cluster_centers_indices_
labels = af.labels_
centroids = af.cluster_centers_
nclusters=(len(cluster_centers_indices))
delta_t = time.time() - t0
if (methode==4):
# The following bandwidth can be automatically detected using
data = np.array(data)
t0 = time.time()
bandwidth = estimate_bandwidth(data, quantile=0.2, n_samples=500)
ms = MeanShift(bandwidth=bandwidth, bin_seeding=True)
ms.fit(data)
labels = ms.labels_
cluster_centers = ms.cluster_centers_
centroids = cluster_centers
labels_unique = np.unique(labels)
nclusters = len(labels_unique)
delta_t = time.time() - t0
print("number of estimated clusters : %d" % nclusters)
return [labels, centroids, delta_t,nclusters]
def PerfomanceKmeansBatch(data):
TK = []
TM=[]
N=[]
batch_size = 45
for i in range (1,20):
N.append(i)
kmeans = KMeans(init='k-means++', n_clusters=i, n_init=10)
t0 = time.time()
kmeans.fit(data)
delta_t = time.time() - t0
TK.append(delta_t)
minkmeans = MiniBatchKMeans(init='k-means++',n_clusters=i, batch_size=batch_size,
n_init=10, max_no_improvement=10, verbose=0)
t0 = time.time()
minkmeans.fit(data)
delta_t = time.time() - t0
TM.append(delta_t)
plt.plot(N,TM, label = 'kmeans')
plt.plot(N,TK,label = 'MiniBatchKMeans')
plt.legend()
plt.xlabel("n_clusters")
plt.ylabel("Time (ms)")
plt.title("Comparision Kmeans & MiniBatchKMeans")
plt.show()
def ResultKmeansMinbatch(data,n_clusters):
data=np.array(data)
k_means = KMeans(init='k-means++', n_clusters=n_clusters, n_init=10)
k_means.fit(data)
batch_size = 45
mbk = MiniBatchKMeans(init='k-means++', n_clusters=n_clusters, batch_size=batch_size,
n_init=10, max_no_improvement=10, verbose=0)
mbk.fit(data)
##############################################################################
# Plot result
# We want to have the same colors for the same cluster from the
# MiniBatchKMeans and the KMeans algorithm. Let's pair the cluster centers per
# closest one.
k_means_cluster_centers = np.sort(k_means.cluster_centers_, axis=0)
mbk_means_cluster_centers = np.sort(mbk.cluster_centers_, axis=0)
k_means_labels = pairwise_distances_argmin(data, k_means_cluster_centers)
mbk_means_labels = pairwise_distances_argmin(data, mbk_means_cluster_centers)
order = pairwise_distances_argmin(k_means_cluster_centers,
mbk_means_cluster_centers)
Xsimilar = []
Ysimilar = []
Xdifferent=[]
Ydifferent=[]
for i in range (len(k_means_labels)):
if (k_means_labels[i]==mbk_means_labels[i]):
Xsimilar.append(X[i])
Ysimilar.append(Y[i])
else :
Xdifferent.append(X[i])
Ydifferent.append(Y[i])
x_min, x_max = min(X)-1,max(X)+1
y_min,y_max = min(Y)-1,max(Y)+1
plt.plot(Xsimilar,Ysimilar,'o',color='w', marker='.')
plt.plot(Xdifferent,Ydifferent,'o',color='r', marker='.')
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xlabel("Coordonnée X")
plt.ylabel("Coordonnée Y")
plt.title("points de divergence entre la méthode kmeans et MiniBatch")
plt.show()
def GrapheLondon (methode,nclusters,X,Y,data):
[labels, centroids, delta_t,nclusters] = ClusteriserData(methode,nclusters,data)
datatot=[] #ligne 0 correspond à label =0, ligne1 -> label=1
Xtot=[] #dememe pour X, ligne 0 =valeur de X pour les élements qui ont pour label 0
Ytot=[]
for j in range (nclusters):
datatot.append([])
Xtot.append([])
Ytot.append([])
for i in range (len(labels)):
for j in range (nclusters):
if(labels[i]==j):
datatot[j].append(data[i])
Xtot[j].append(X[i])
Ytot[j].append(Y[i])
x_min, x_max = min(X)-1,max(X)+1
y_min,y_max = min(Y)-1,max(Y)+1
from itertools import cycle
plt.figure(1)
plt.clf()
colors = cycle('bgrykbgrcmykbgrcmykbgrcmyk')
for k, col in zip(range(nclusters), colors):
plt.plot(Xtot[k],Ytot[k],'o',marker='.',color=col,label=centroids[k])
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xlabel("Coordonnée X")
plt.ylabel("Coordonnée Y")
plt.title("Répartition des polluants dans Londres, kmeans ")
plt.show()
def methodeAffinityPropragation(): #ronction qui réalise l'apprentissage et print, le but est de montrer que pas adapter car trop de linéarité entre les features
#comparer avec le beau graphe http://scikit-learn.org/stable/modules/clustering.html#k-means en 2.3.3
datareduce =[]
for a in range(1,sh1.nrows-1):
l=[]
l.append(float(sh1.cell(a,14).value) )
l.append(float(sh1.cell(a,20).value) )
datareduce.append(l)
datareduce = datareduce[:100]
t0 = time.time()
af = AffinityPropagation(convergence_iter =5).fit(datareduce)
cluster_centers_indices = af.cluster_centers_indices_
labels = af.labels_
centroids = af.cluster_centers_
dt = time.time()-t0
n_clusters_=(len(cluster_centers_indices))
import matplotlib.pyplot as plt
from itertools import cycle
colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk')
for k, col in zip(range(n_clusters_), colors):
cluster_center = centroids[k]
plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col,markeredgecolor='k')
Feat0 =[]
Feat1=[]
for i in range (len(datareduce)):
if (labels[i]==k):
Feat0.append(datareduce[i][0])
Feat1.append(datareduce[i][1])
plt.plot(Feat0, Feat1, col + '.')
plt.title('Affinity propragation on CO2-NO2 features')
print()
print('running time', dt)
plt.xlabel("CO2")
plt.ylabel("NO2 ")
print()
print('nombre de clusters estimés',n_clusters_)
return af.get_params();
"""
"""PARTIE 4 : le voronoi avec réduction des features pour arriver en dim2"""
"""X=[]
for a in range(1,sh1.nrows-1):
X.append(sh1.cell(a,7).value)
Y=[]
for a in range(1,sh1.nrows-1):
Y.append(sh1.cell(a,8).value)
data=[]
for a in range(1,sh1.nrows-1):
l=[]
for j in range (14,sh1.ncols):
l.append(float(sh1.cell(a,j).value) )
data.append(l)
n_digits=5
reduced_data = PCA(n_components=2).fit_transform(data)
kmeans = KMeans(init='k-means++', n_clusters=n_digits, n_init=10)
kmeans.fit(reduced_data)
# Step size of the mesh. Decrease to increase the quality of the VQ.
h = .02 # point in the mesh [x_min, x_max]x[y_min, y_max].
# Plot the decision boundary. For that, we will assign a color to each
x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1
y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 10), np.arange(y_min, y_max, 0.2))
# Obtain labels for each point in mesh. Use last trained model.
Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure(1)
plt.clf()
plt.imshow(Z, interpolation='nearest',
extent=(xx.min(), xx.max(), yy.min(), yy.max()),
cmap=plt.cm.Paired,
aspect='auto', origin='lower')
plt.plot(reduced_data[:, 0], reduced_data[:, 1], 'k.', markersize=2)
# Plot the centroids as a white X
centroids = kmeans.cluster_centers_
plt.scatter(centroids[:, 0], centroids[:, 1],
marker='x', s=169, linewidths=3,
color='w', zorder=10)
plt.title('K-means clustering on the digits dataset (PCA-reduced data)\n'
'Centroids are marked with white cross')
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xticks(())
plt.yticks(())
plt.show()"""